Transilvania University of Braşov, Romania

Study program: Modern Technologies in Software Systems Engineering 2023-2025

Faculty of Mathematics and Comp	uter Science
Study period:	2 years (master)
Academic year structure:	2 semesters (14/12 weeks per semester)
Examination sessions (two):	winter session (January/February)
	summer session (June/July)

Courses per years

Course title	Code	No. of		Number of h	nours per week	
	oode	credits	course	seminar	laboratory	project
Architecture of Enterprise Software	ASSEN	8	2		2	
SystemsNET Platform						

Course description (Syllabus): Introduction to enterprise architectures. Structuring on levels. Organizing the domain logic. Architectural models for domain logic. Architectural models for data sources. Object-relational behavioral models. Object-relational structural models. Web presentation templates. Distribution models, concurrent access Models of maintaining the state. Basic patterns for enterprise applications.

Course title	Code	No. of		Number of h	ours per week	
		credits	course	seminar	laboratory	project
Introduction to Data Science	IDS	7	2		2	

Course description (Syllabus): Foundations, relationship to statistics, early usage, modern usage, Data Science and Data Analysis.

Course title	Code	No. of	Number of hours per week				
		credits	course	seminar	Laboratory	project	
Distributed Programming	TEHPD	8	2		2		
Techniques							

Course description (Syllabus): WebSocket; Web application frameworks (Struts, Java Server Faces); AJAX, Google Web Toolkit; Web Services (Schema, WSDL); JAX-WS and JAX-RI services; 0SGi.

	Code	No. of	1	Number of ho	urs per week	
Course title	0000	credits	course	seminar	Laboratory	project
Mobile Devices Programming. Android	PDMPA	7	2		2	
Perspective.						

Course description (Syllabus): Android SDK and Android Studio; Advanced Java concepts; Design and implementation of Android interfaces; Fragment and Intent; Ensure compatibility with previous versions; Databases in Android; Sensors and actions / gestures; Multimedia, localization, communication, NFC; Execution threads; Services.

Course title	Code No. of credits		Number of hours per week				
		credits	course	seminar	laboratory	project	
Algorithms in Combinatorial	AOCOM	8	2	1	1		
Optimization							

Course description (Syllabus): Maximum flows and minimum cuts; Matching problem; Minimum flows.

Course title	Code	No. of	1	Number of ho	urs per week	
	UUUE	credits	course	seminar	laboratory	project
Modern technologies for OSX, IOS	ΜΤΟΙ	8	2		2	

Course description (Syllabus): Xcode Cloud, App Store, Swift, Augmented Reality, Graphics and Games, SharePlay, ShazamKit, etc.

Course title	Code	No. of	1	Number of ho	urs per week	
		credits	course	seminar	laboratory	project
Ethics and academic integrty	ETHIC	2	1			

Course description (Syllabus): Researchers should promote accuracy, honesty, and truthfulness in their work; Researchers should work in a fair manner taking into account issues of equality, impartiality, and proportionality; Researchers should show respect to the fundamental rights, dignity, and worth of all people.

Course title	Code	No. of	Number of hours per week				
		credits	course	seminar	laboratory	project	
ORM technologies	TEORM	7	2		2		

Course description (Syllabus): The business logic of an application: EJB container, communication between components (local, remote), middle tier and connection with EIS, the advantages of using EJBs; Steps in designing an enterprise application containing EJBs; Session bean: stateless and stateful. The life cycle, the role of callback methods; Customers of applications containing EJBs, JNDI service, specific annotations; Special session bean: single session bean, asynchronous methods (Future objects); JMS service: communication between components through messages, producer and consumer, message features, message architectures: Point to Point, Publisher-Subscriber. Application for using a queue, respectively topic messages, Connection Factories

Course title	Code	Code No. of		Number of hours per week				
		credits	course	seminar	laboratory	project		
Big Data and Machine Learning	BDAML	7	2		2			

Course description (Syllabus): Big data and their relevance in various domains; The importance of data analysis, and the infrastructures for the design of big data algorithms; Parallel and distributed architectures. Platforms; Introduction to cloud computing. Taxonomy; Cluster computing; Grid computing; Kernel based learning; Models that are based on support arrays; Reinforcement learning; Neural networks and deep learning.

Course title	Code	Code No. of Credit	Number of hours per week				
			course	seminar	laboratory	project	
Non-sequential functional	PROFU	7	2		2		
programming							

Course description (Syllabus): Programming imperative to functional programming. Sequential

programming versus distributed programming. Characterization. Benefits. disadvantages; Functional programming elements. Use of a functional programming language; Distributed systems. Distributed algorithms; Non-sequential programming elements (parallel, concurrent, distributed); Development of non-sequential applications with functional programming languages. Characterization. Benefits. disadvantages; Support Python language for developing distributed functional applications; Haskell language support for parallelism and competition; Approaching distributed computing with functional agents; Functional applications in scientific simulations

Course title	Code	No. of	1	Number of ho	urs per week	
		credits	course	seminar	laboratory	project
Advanced elements of computational	EAGCO	8	2		2	
Graphics						

Course description (Syllabus): Graphics in Visual C ++. Animation; Projections (orthographic, perspective); 3D transformations, homogeneous coordinates; Hiding rear faces and z-buffering; Lighting, shading; Application of textures; Ray-tracing; OpenGL (presentation and management of OpenGL states, drawing objects, visualization, coloring, lighting, transformations, 3D effects, texturing).

Course title	Code	No. of	Number of hours per week				
		credits	course	seminar	laboratory	project	
Management of computer networks	ARETC	7	2		2		

Course description (Syllabus): Elementary concepts regarding the Linux disk; Working with files, command substitution, environment variables; Working with processes. Users administration; GRUB, Inittab, runlevels. Working with packages, The Linux kernel and its administration; NFS, NIS; DNS in Linux, the BIND server; The allocation of IP adresses, DHCP.

Course title	Code	No. of	Number of hours per week			
		credits	course	seminar	laboratory	project
Cloud computing	CLCOM	8	2		2	

Course description (Syllabus): What is a cloud. History. Characteristics. Costs. MapReduce paradigm. YARN scheduler; Multicast problem. Gossip protocol. Membership. Mathematical modelling of the protocol; Grids. Peer—to— peer systems. Napster. Gnutella. FastTrack and BitTorrent. Chord. Pastry. Kelips; Key—value stores. Apache Cassandra. CAP theorem. Consistency models; Time and ordering. Christian algorithm. NTP. Lamport timestamps. Vector timestamps; Global snapshots. Chandy-Lamport algorithm. Consistent cuts. Safety and liveness; Multicast ordering. Reliable multicast. Virtual synchrony; Consensus problem. Paxos. Leader election algorithm. Chubby. Zookeeper. Bully.