DISCIPLINE SHEET

1. Program data

1.1 Higher education institution	Transylvania University of Brasov	
1.2 Faculty	Mathematics and Computer Science	
1.3 Department	Mathematics and Computer Science	
1.4 Scopestudies1)	Computer science	
1.5 Study cycle2)	Master's degree	
1.6 Study program/Qualification	Internet Technologies	

2. Data about the discipline

2.1 Name of the disc	cipline	Cybersecurity	Cybersecurity Programming						
2.2 Course activities holder			Assoc. Prof. Dr. S	Silviu	Dumitrescu				
2.3 Seminar/laboratory/project activities holder			Ion Chirobocia						
2.4 Year of study	1	2.5 Semester	2	2.6 Ty	-	С	2.7	Content3)	ISD
				evalu	ation		Discipline regime	Obligation4)	DI

3. Total estimated time (hours per semester of teaching activities)

3.1 Number of hours per week	4	of which: 3.2	2	3.3	0/2/0
		course		seminar/laboratory/project	
3.4 Total hours in the curriculum	56	of which: 3.5	28	3.6	28
		course		seminar/laboratory/project	
Distribution of time fund					hours
Study according to the textbook, course material, bibliography and notes					30
Additional documentation in the library, on specialized electronic platforms and in the field					30
Preparation of seminars/laboratories/projects, assignments, papers, portfolios and essays					45
tutorial					10
EXAMINATION					4
Other activities				0	

3.7 Total student activity hours	94
3.8 Total hours per semester	150
3.9 Number of credits5)	6

4. Preconditions (where applicable)

4.1 curriculum	 Specific concepts for imperative programming and functional programming Highlights regarding the development of software applications and information systems
	Notions of academic writing, scientific and professional ethics
4.2 skills	General and specialized skills according to the completed Bachelor's degree program
	Research skills at the level of a bachelor's degree graduate

5. Conditions (where applicable)

5.1 Course schedule	• Classroom
5.2 of the	Laboratory room with specific educational and information resources –
seminar/laboratory/project	computers, network connection, internet

6. Specific skills acquired (according to the skills grid in the curriculum)

- C1. Documentation and execution of scientific works for projects with a pronounced applied character developed by capitalizing on non-sequentiality facilities (parallelism and concurrency) at the level of software systems
- R. 1.2. The graduate can frame a problem within a studied theoretical framework;
- RÎ. 1.3. The graduate can apply modern programming methods and techniques to solving series various problems;
- RÎ. 1.4. The graduate can provide demonstrations and explanations regarding the validity of computer science results

affirmed;

Professional skills

Transversal skills

- RÎ. 1.5. The graduate can apply computer methods and techniques to solve practical problems;
- RÎ. 1.7. The graduate can analyze algorithms that lead to the solution of practical problems;
- C2. Design and implementation of projects in the field of functional programming, with parallel and concurrent applications in various research and application fields
- RÎ. 3.3. The graduate is able to make interconnections between different computer science fields;
- R. 3.5. The graduate can frame a problem within a studied theoretical framework;
- RÎ. 3.6. The graduate can apply modern computer science methods and techniques to solve various problems. of problems
- CT1. Use of effective methods and techniques for learning, information, research and development of knowledge capitalization capacities, adaptation to the requirements of the information society
- RÎ.1.2. The graduate uses communication and relationship techniques in the virtual environment;
- RÎ.1.3. The graduate is able to cooperate and integrate into professional work teams in the field educationally and in interdisciplinary teams;
- RÎ. 1.5. The graduate can give presentations and public communications to promote knowledge and professional values.
- CT. 2. Career development and management
- RÎ. 2.2. The graduate formulates objectives regarding career development and identifies action strategies in this regard.

sense;

RÎ.2.3. The graduate self-evaluates and reflects on his/her own career, identifying strategies for adjustment and overcoming professional difficulties.

7. Objectives of the discipline (based on the specific skills acquired)

7.1 General objective of the discipline	The use of theoretical and applied foundations of computer science to transmit concepts specific to functional programming oriented towards parallelism and concurrency, in order to effectively use these characteristics in the work of the future computer scientist at the level of a modern functional programming language
7.2 Specific objectives	 Developing web application development skills usingâthe Java language Correlating the specific elements of functional programming with those of non-sequential programming (parallel / concurrent / distributed) for the development of modern applications that optimally meet the requirements Identifying problem situations that can be effectively solved through non-sequential functional applications Identifying and capitalizing on functional and non-sequential aspects of non-specific programming languages in project development

8. Contents

8.1 Course	Teaching methods	Number of	Observations
		hours	
Deployment containers	Interactive course	4	
The backend of web applications		4	
The frontend of web applications	Lecture	6	
Cloud as PaaS		6	
Security in communication	Dialogue	4	
Security in programming	Debate	4	

Bibliography:

- 1. J2EE Tutorial, Programmers Guide, 2017
- 2. The advanced Java, Gopalan Raj, California, 2017

- Kathy Sierra and Bert Bates, McGraw-Hill/Osborne, SCJP Sun Certified Programmer for Java 7 Study Guide (Exam 310-065), 2013
- 4. Mughal, Khalid A., Rasmussen, Rolf W., A Programmer's Guide to Java Certification, Pearson Education, 2017 Liskov, Barbara, Guttag, John, Program Development in Java, Addison Wesley, 2018

8.2 Seminar/laboratory/project	Teaching-learning methods	Number of hours	Observations
Web project in the cloud with orm persistence level	Case study	4	
Schemes and diagrams	Problem solving	4	
Implementing application services		8	
Implementing data security	Group work	4	
CI/CD		4	
Documentation	Problematic	4	
	Design		

Bibliography:

- 5. J2EE Tutorial, Programmer's Guide, 2023
- 6. The advanced Java, Gopalan Raj, California, 2019
- 7. Kathy Sierra and Bert Bates, McGraw-Hill/Osborne, SCJP Sun Certified Programmer for Java 19 Study Guide (Exam 310-065), 2023
- 8. Mughal, Khalid A., Rasmussen, Rolf W., A Programmer's Guide to Java Certification, Pearson Education, 2017 Liskov, Barbara, Guttag, John, Program Development in Java, Addison Wesley, 2018
- 9. Correlating the content of the discipline with the expectations of representatives of epistemic communities, professional associations and representative employers in the field related to the program

The corroboration applies in partnership agreements and practice conventions concluded with partners from the social economic environment.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Weight of	
			the final grade	
10.4 Course	Achieving the educational	Project presentation	85%	
	objectives of the discipline			
10.5 Seminar/laboratory/project		Laboratory tasks	15%	
10.6 Minimum performance standard				

• Creating an application related to distributed applications, concurrency, communication between components, middle tier and connection with EIS.

This Discipline Sheet was approved at the Department Council meeting on September 26, 2024 and approved at the Faculty Council meeting on September 26, 2024.

Associate Professor Dr. Gabriel Stan	Associate Professor Dr. Nicusor Minculete
Dean	
-	Department manager
Assoc. Prof. Dr. Silviu Dumitrescu	Assist Ion Chirobocia
Course holder	Seminar/laboratory/project leader

Note:

¹⁾ Field of study - choose one of the options: Bachelor's/Master's/Doctorate (is completed in accordance with the Nomenclature of fields and specializations/university study programs in force);

²⁾ Study cycle - choose one of the options: Bachelor's/Master's/Doctorate;

- ³⁾ Discipline regime (content) choose one of the options: DF(fundamental discipline)/DD(discipline in the field)/DS(specialized discipline)/AD(complementary discipline) for the bachelor's level;DAP (specialization discipline)/ISD(synthesis discipline)/DC underscored(advanced knowledge discipline) for the master's level;
- ⁴⁾ Discipline regime (compulsory) choose one of the options:DI (mandatory subject)/DO(optional subject)/DFac (optional subject);
- ⁵⁾ One credit is equivalent to 25 hours of study (teaching activities and individual study).