DISCIPLINE SHEET

1. Program data

1.1 Higher education institution	Transylvania University of Brașov
1.2 Faculty	Mathematics and Computer Science
1.3 Department	Mathematics and Computer Science
1.4 ScopestudiesMaster1)	Computer science
1.5 Study cycle2)	MASTERS
1.6 Study program/Qualification	Internet technologies

2. Data about the discipline

2.1 Name of the disci	pline	Managing Wir	eless	Networks					
2.2 Course activities holder			Prof. Dr. Eng	. Sori	n-Aurel MORAR	U			
2.3 Seminar/laboratory/project activities holder				Prof. Dr. Eng	. Sori	n-Aurel MORAR	U		
2.4 Year of study	2	2.5 Semester	1	2.6 Type of evaluation		lt is	2.7 Discipline regime	Content3)	DC unders cored
								Obligation3)	DI

3. Total estimated time (hours per semester of teaching activities)

3.1 Number of hours per week	4	of which: 3.2	2	3.3 seminar/laboratory/project	0/2/0
		course			
3.4 Total hours in the curriculum	56	of which: 3.5	28	3.6 seminar/laboratory/project	0/28/0
		course			
Distribution of time fund					hours
Study according to the textbook, cour	rse materia	I, bibliography and	notes		42
Additional documentation in the libra	ry, on spe	cialized electronic p	latforms a	and in the field	42
Preparation of seminars/laboratories	/projects, a	assignments, papers	s, portfoli	os and essays	42
tutorial					10
EXAMINATION				8	
Other activities					-
3.7 Total student activity hours		144			•
2.9 Total baurs par comactor		200			

3.8 Total hours per semester	200
3.9 Number of credits5)	8

4. Preconditions (where applicable)

4.1 curriculum	•	Basics of communication in computer networks Computer programming for distributed systems
4.2 skills	•	General and specific competencies following the undergraduate university study program Research skills at undergraduate level

5. Conditions (where applicable)

5.1 Course schedule	Classroom with video projector, laptop
5.2 of the	• Laboratory room with educational and ICT resources: a computer network,
seminar/laboratory/project	network interconnection equipment, internet services

6. Specific skills acquired (according to the skills grid in the curriculum)

cills	 Expanding students' knowledge based on recent methodologies and technologies, already applied in the field of software development or ready to be used in the near future;
Professional skills	 Correct use of language specific to the Internet context to describe the hardware and/or software support of a particular distributed system;
ofessi	 Developing specialized problem-solving skills to recognize the particular internet context and to be ready to develop modern applications for practical problems in different fields;
P	• Encourage the development of professional and/or research projects using recent remote solutions.
	 Performing professional tasks under partial autonomy and total responsibility;
Transversal skills	 Have adequate learning skills to continue their studies and develop a reflective and analytical attitude towards their professional profile.

7.1 General objective of the	This course presents specific topics about Wireless Systems Management.				
discipline	After this course, the student will be able to understand a comprehensive				
	definition of wireless systems and the context of their management.				
	• This course also provides an introduction to wireless systems management.				
7.2 Specific objectives	Building knowledge in the field of wireless systems management viewed as a				
	system and seen in turn in terms of specific components.				
	 Developing skills and values necessary for constructivist approaches to 				
	problems specific to wireless systems management.				

7. Objectives of the discipline (based on the specific skills acquired)

8. Contents

3.1 Course	Teaching	Number of	Observations
	methods	hours	
Dbject-oriented design; Design integration and optimization;		2	
mbedded systems platform			
Smart sensor networks; smart transducer connection; control network		4	
Nireless sensor networks; Operating systems for scalable wireless		2	
ensor networks; dynamic power management			
Routing in wireless sensor networks; energy steering for sensor		2	
networks			
Distributed Sensor Networks; Bluetooth in Distributed Sensor		2	
Networks; Bluetooth Communication and Networking	Problematic		
Clustering techniques in wireless sensor networks; clusters in sensor	reading	4	
networks; performance	design and		
Security protocols in sensor networks; requirements; communication	development in	2	
ecurity	teams		
Applications of wireless sensor networks; application support and	group work	2	
communication; habitat and environmental monitoring	conversation		
igBee / IEEE 802.15.4 network examples	case studies	2	
Iome automation; Security systems; Meter reading systems;		2	
rrigation systems; Lighting control systems; Multi-zone HVAC			
ystems; Consumer electronics: remote control			
ndustrial Automation; Asset Management and Personnel Tracking		2	
lealth; Other applications; Hotel room; Fire extinguisher access]	2	

[1] Borangiu, Th., Moraru, S., et al – DB2 Databases – UDB Universal DataBase. Fundamentals and Administration, Ed. Agir, Bucharest, 2006, ISBN 973-720-088-8.

[2] Borangiu, Th., Moraru, S., et al – DB2 Databases - UDB Universal DataBase. Applications, Ed. Agir, Bucharest, 2006, ISBN 973-720-089-6.

[3] Farahani, S., – Zigbee Wireless Networks and Transceivers, Elsevier, 2008, ISBN: 978-0-7506-8393-7

[5] Hac, A. – Wireless Sensor Network Designs, John Wiley and Sons, Braşov, 2003, ISBN 0-470-86736-1

[6] Merz, H., Hansemann, T., Christof H
übner, C., – Building Automation, Communication Systems with EIB/KNX, LON and BACnet, Springer, 2009, ISBN: 978-3-540-88828-4

8.2 Seminar/laboratory/project	Teaching –	Number of	Observatio
	learning methods	hours	ns

Object-oriented design	Problematic	2	
Intelligent sensor networks	design and	4	
Wireless sensor networks	development in	2	
Routing in wireless sensor networks	teams	4	
Distributed sensor networks	group work	2	
Clustering techniques in wireless sensor networks	conversation	4	
Security protocols in sensor networks	case studies	4	
Applications of wireless sensor networks		4	
ZigBee / IEEE 802.15.4 network examples		2	
Bibliography			
[1] Borangiu Th. Moraru S. et al – DB2 Databases – LIDB	Universal DataBase Eundamental	s and Adminis	tration

- Borangiu, Th., Moraru, S., et al DB2 Databases UDB Universal DataBase. Fundamentals and Administration, Ed. Agir, Bucharest, 2006, ISBN 973-720-088-8.
- [2] Borangiu, Th., Moraru, S., et al DB2 Databases UDB Universal DataBase. Applications, Ed. Agir, Bucharest, 2006, ISBN 973-720-089-6.
- [3] Farahani, S., Zigbee Wireless Networks and Transceivers, Elsevier, 2008, ISBN: 978-0-7506-8393-7
- [5] Hac, A. Wireless Sensor Network Designs, John Wiley and Sons, Braşov, 2003, ISBN 0-470-86736-1
- [6] Merz, H., Hansemann, T., Christof Hübner, C., Building Automation, Communication Systems with EIB/KNX, LON and BACnet, Springer, 2009, ISBN: 978-3-540-88828-4

9. Correlating the content of the discipline with the expectations of representatives of epistemic communities, professional associations and representative employers in the field related to the program

The content of this academic discipline is corroborated with the expectations of potential employers in various fields. The course follows the ACM and IEEE Curriculum Recommendations for Computer Science Studies (Computer Science 2013, Computer Engineering 2016, Information Systems 2010, Software Engineering 2014). The course content is dealt with accordingly with the national and European directives on professional and transversal

competences (NQFHE, November 2011).

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Weight of the final grade
10.4 Course	 Fairness Completeness Presentation logic 	Final evaluation by oral exam	40%
10.5 Seminar/laboratory/project	Ability to apply theoretical results and studied techniques	Active participation throughout the semester in course/seminar/laboratory activities	50%
	The ability to independently solve a laboratory task	Final evaluation through laboratory assignment	10%
10.6 Minimum performance stand	,		
Basic knowledge of remote proces	s control		

This Discipline Sheet was approved in the Department Council meeting on 09/26/2024 and approved in Faculty Council meeting on 09/26/2024.

Associate Professor Dr. Ion-Gabriel STAN	Assoc. Prof. Dr. Nicușor MINCULETE
Dean	Department manager
Prof. Dr. Eng. Sorin-Aurel MORARU	Prof. Dr. Eng. Sorin-Aurel MORARU
Course holder	Laboratory owner

Note:

¹⁾ Field of study - choose one of the options: Bachelor's/Master's/Doctorate (is completed in accordance with the Nomenclature of fields and specializations/university study programs in force);

- ²⁾ Study cycle choose one of the options: Bachelor's/Master's/Doctorate;
- ³⁾ Discipline regime (content) choose one of the options: DF(fundamental discipline)/DD(discipline in the field)/DS(specialized discipline)/AD(complementary discipline) for the bachelor's level;DAP (specialization discipline)/ISD(synthesis discipline)/DC underscored(advanced knowledge discipline) for the master's level;
- ⁴⁾ Discipline regime (compulsory) choose one of the options:DI (mandatory subject)/DO(optional subject)/DFac (optional subject);
- ⁵⁾ One credit is equivalent to 25 30 hours of study (teaching activities and individual study).