COURSE OUTLINE

1. Data about the study programme

1.1 Higher education institution	Transilvania University of Brasov
1.2 Faculty	Mathematics and computer science
1.3 Department	Mathematics and computer science
1.4 Field of study ¹⁾	Computer science
1.5 Study level ²⁾	MA
1.6 Study programme/ Qualification	Internet Technologies

2. Data about the course

2.1 Name of course				Pr	ocess Control at [Distance		
2.2 Course convenor			VIZITIU Cristian					
2.3 Seminar/ lab	orato	ry/ project conve	nor	VIZITIU Cristian				
2.4 Study year	2	2.5 Semester	1	2.6 Evaluation type	Е	2.7 Course	Content ³⁾	PC
						status	Attendance type ⁴⁾	CPC

3. Total estimated time (hours of teaching activities per semester)

		- 6			
3.1 Number of hours per week	3	out of which: 3.2 lecture	1	3.3 seminar/ laboratory/ project	0/2/0
3.4 Total number of hours in	4 Total number of hours in 42 out of which: 3.5 lecture 14 3.6 seminar/ laboratory/		3.6 seminar/ laboratory/ project	0/28/0	
the curriculum					
Time allocation					hours
Study of textbooks, course support, bibliography and notes					42
Additional documentation in libraries, specialised electronic platforms, and field research					42
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays					42
Tutorial					10
Examinations					8
Other activities					-

3.7 Total number of hours of student activity	144
3.8 Total number per semester	200
3.9 Number of credits ⁵⁾	8

4. Prerequisites (if applicable)

4.1 curriculum-related	Bases in computer networks communication
	Computer programming for distributed systems
4.2 competences-related	General and specific competences following the graduated bachelor study program
	Research competences at the bachelor level

5. Conditions (if applicable)

5.1 for course development	Overhead projector, hand-outs, laptop/notebook
5.2 for seminar/ laboratory/	Laboratory class with educational and ICT resources: a computer network, network
project development	interconnection equipment, internet services

6. Specific competences

	•	Extending students' knowledge based on recent methodologies and technologies, already applied in
		software development domain or ready to be used in the near future;
lar Les	•	Correct using of <i>specific language</i> for the internet context, <i>to describe</i> the hardware and/or software
sional		support of a given distributed system;
Professional	•	Developing specialised problem-solving skills for recognising the particular internet context and being
Pro	5	ready to develop modern applications for practical problems from different fields
	•	Encouraging the development of professional and/or research projects using the recent remote solutions
		for the internet computing
Transversal	•	Undertaking professional tasks under partial autonomy and total responsibility; Having suitable learning skills to continue to study and to develop a reflective, analytical attitude upon the professional profile.

7. Course objectives (resulting from the specific competences to be acquired)

results objectives (resulting from the specific competences to be dequired)				
7.1 General course	This course presents the specific topics about the Process Control at Distance. After this			
objective	module, the master-student will be able to understand a comprehensive definition of process			
	control, and the context to the study of Process Control at Distance.			
7.2 Specific objectives	Formation of knowledge in the field of Process Control at Distance, considered as a			
	system and viewed in terms of specific components;			
	Formation of skills and values necessary for constructivist approaches to the problems			
	specific to the Process Control at Distance.			

8. Content

8.1 Course	Teaching	Number	Remarks
	methods	of hours	
1. Methods for function and form identification (i.e., processes,	problematizing	2	
operands, objects, structure) within complex process-based	lecturing		
systems (HW, SW).	design and		
2. Object Process Methodology, language documentation for	develop in teams	2	
complex process-based systems modelling considering functional,	group working		
structural and behavioural aspects.	conversation		
3. Modelling with OPCAT (Object-Process CASE Tool) software.	case studies	4	
4. Design of Complex Process-based System architectures.		2	
5. Frameworks of Complex Process based System architectures.		2	
6. Architectures Modelling for supporting integration of multitude		2	
processes based on SysML Diagrams.			

Bibliography

- [1]. Vizitiu, C.; Bîră, C.; Dinculescu, A.; Nistorescu, A.; Marin, M. Exhaustive Description of the System Architecture and Prototype Implementation of an IoT-Based eHealth Biometric Monitoring System for Elders in Independent Living. *Sensors* 2021, *21*, 1837. https://doi.org/10.3390/s21051837
- [2]. Vizitiu, C. (2019). Systems Engineering and Organizational Assessment Solutions ensuring Sustainability within Telemedicine Context. Book published in Springer Verlag (Springer Nature), Germany, ISBN 9783658235383 (online) 9783658235376 (print), DOI 10.1007/978-3-658-23538-3.
- [3]. Crawley, E., Cameron, B., Selva, D. (2015). System Architecture: Strategy and Product Development for Complex Systems, Global Edition, Publisher Pearson, ISBN: 9780136462989.
- [4]. Văleanu, V., Vasiliu, V., Vizitiu, C., Marin, M., Nistorescu, A., Dinculescu, A., Vizitiu, A., Ion, T. (2015). Portable

- Telemedicine Workstation Full Prototype for Technological Transfer in Critical Interventions Services. Published in ISI Proceedings of the 5th IEEE International Conference on E-Health and Bioengineering EHB 2015, Iaşi, Romania, November 19-21.
- [5]. Dov Dori (2002). Object-Process Methodology A Holistic Systems Paradigm. Springer 2002, ISBN 3-540-65471.
- [6]. Automation Systems and Integration: Object-Process Methodology ISO/PAS 19450:2015(en): https://www.iso.org/obp/ui/#iso:std:iso:pas:19450:ed-1:v1:en
- [7]. Hein, A.M., Karban, R., Weilkiens, T., Zamparelli, M., Hauber, R. (2011). Cookbook for MBSE with SysML. INCOSE SE2 MBSE Telescop Challenge Team. DOI: 10.13140/2.1.4291.2324. https://www.researchgate.net/publication/268977905.

8.2 Seminar/ laboratory/ project	Teaching-	Number of	Remarks
	learning methods	hours	
1. Function and form identification (i.e., processes, operands,	problematizing	4	
objects, structure) within specific complex process-based systems	design and		
(HW, SW).	develop in teams		
2. Process representation and Object Process Diagrams (OPD)	group working	4	
Definition on complex process-based systems.	conversation		
3. Types of processes and structures in OPCAT (Object-Process	case studies	4	
CASE Tool) software.			
4. Developing Object Process Diagrams (OPD) in OPCAT (Object-		8	
Process CASE Tool) software.			
5. Documentation and Implementations based on complex		4	
process-based System architectures Frameworks.			
6. Architectures Modelling for supporting integration of multitude		4	
processes based on SysML Diagrams.			

Bibliography

- [1]. Vizitiu, C.; Bîră, C.; Dinculescu, A.; Nistorescu, A.; Marin, M. Exhaustive Description of the System Architecture and Prototype Implementation of an IoT-Based eHealth Biometric Monitoring System for Elders in Independent Living. Sensors 2021, 21, 1837. https://doi.org/10.3390/s21051837
- [2]. Vizitiu, C. (2019). Systems Engineering and Organizational Assessment Solutions ensuring Sustainability within Telemedicine Context. Book published in Springer Verlag (Springer Nature), Germany, ISBN 9783658235383 (online) 9783658235376 (print), DOI 10.1007/978-3-658-23538-3.
- [3]. Crawley, E., Cameron, B., Selva, D. (2015). System Architecture: Strategy and Product Development for Complex Systems, Global Edition, Publisher Pearson, ISBN: 9780136462989.
- [4]. Văleanu, V., Vasiliu, V., Vizitiu, C., Marin, M., Nistorescu, A., Dinculescu, A., Vizitiu, A., Ion, T. (2015). Portable Telemedicine Workstation Full Prototype for Technological Transfer in Critical Interventions Services. Published in ISI Proceedings of the 5th IEEE International Conference on E-Health and Bioengineering EHB 2015, Iaşi, Romania, November 19–21.
- [5]. Dov Dori (2002). Object-Process Methodology A Holistic Systems Paradigm. Springer 2002, ISBN 3-540-65471.
- [6]. Automation Systems and Integration: Object-Process Methodology ISO/PAS 19450:2015(en): https://www.iso.org/obp/ui/#iso:std:iso:pas:19450:ed-1:v1:en
- [7]. Hein, A.M., Karban, R., Weilkiens, T., Zamparelli, M., Hauber, R. (2011). Cookbook for MBSE with SysML. INCOSE SE2 MBSE Telescop Challenge Team. DOI: 10.13140/2.1.4291.2324. https://www.researchgate.net/publication/268977905.
- 9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

- the course follows the ACM and IEEE Curricula Recommendations for Computer Science studies (Computer Science 2013, Computer Engineering 2016, Information Systems 2010, Software Engineering 2014);
- the content of the course is treated accordingly with the national and European directives regarding the professional and transversal competences (NQFHE, Nov. 2011)

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage		
			of the final grade		
10.4 Course	Achieving the discipline objectives	Final evaluation by oral examination	40%		
	Proving the specific discipline				
10.5 Seminar/	competences	Active participation during the	40%		
laboratory/	Accurate and fluent use of	semester in the course / seminar /			
project	specific terms	laboratory activities			
		Final evaluation by laboratory theme	20%		
10.6 Minimal performance standard					
Base knowledge and skills about wireless systems management					

This course outline was certified in the Department Board meeting on 26/09/2024 and approved in the Faculty Board meeting on 26/09/2024.

Conf.dr Ion Gabriel Stan	Conf. Dr. Nicușor Minculete
Dean	Head of Department
Dr. Eng. Cristian VIZITIU	Dr. Eng. Cristian VIZITIU
(Faculty IESC)	(Faculty IESC)
Course holders	Holders of laboratory

Note:

- 1) Field of study select one of the following options: BA/MA/PhD. (to be filled in according to the forceful classification list for study programmes);
- 2) Study level choose from among: BA/MA/PhD;
- Course status (content) for the BA level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the MA level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- ⁴⁾ Course status (attendance type) select one of the following options: **CPC** (compulsory course)/ **EC** (elective course)/ **NCPC** (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 30 study hours (teaching activities and individual study).