1. Data about the study programme

1.1 Higher education institution	Transilvania University of Brasov
1.2 Faculty	Mathematics and computer science
1.3 Department	Mathematics and computer science
1.4 Field of study ¹⁾	Computer science
1.5 Study level ²⁾	MA
1.6 Study programme/ Qualification	Internet Technologies

2. Data about the course

2.1 Name of course			Process Control at Distance					
2.2 Course convenor				VIZITIU Cristian				
2.3 Seminar/ laboratory/ project convenor			VIZITIU Cristian					
2.4 Study year	2	2.5 Semester	1	2.6 Evaluation type	Е	2.7 Course	Content ³⁾	PC
						status	Attendance type ⁴⁾	СРС

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week	3	out of which: 3.2 lecture	1	3.3 seminar/ laboratory/ project	0/2/0
3.4 Total number of hours in	42	out of which: 3.5 lecture	14	3.6 seminar/ laboratory/ project	0/28/0
the curriculum					
Time allocation					hours
Study of textbooks, course support	t, biblio	graphy and notes			39
Additional documentation in libraries, specialised electronic platforms, and field research					38
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays					38
Tutorial					10
Examinations					8
Other activities					-
3.7 Total number of hours of stude	ent activ	rity 133			
3.8 Total number per semester		175			

5.8 Total number per semester	1/5
3.9 Number of credits ⁵⁾	7

4. Prerequisites (if applicable)

4.1 curriculum-related	•	Bases in computer networks communication
	•	Computer programming for distributed systems
4.2 competences-related	•	General and specific competences following the graduated bachelor study program
	•	Research competences at the bachelor level

5. Conditions (if applicable)

5.1 for course development	Overhead projector, hand-outs, laptop/notebook
5.2 for seminar/ laboratory/	• Laboratory class with educational and ICT resources: a computer network, network
project development	interconnection equipment, internet services

6. Specific competences

	•	Extending students' <i>knowledge</i> based on recent methodologies and technologies, already applied in software development domain or ready to be used in the near future;
al es		Correct using of <i>specific language</i> for the internet context, <i>to describe</i> the hardware and/or software support
on	•	
ssi ete		of a given distributed system;
Professional competence:	•	Developing specialised problem-solving skills for recognising the particular internet context and being ready to
Professional competences		develop modern applications for practical problems from different fields
Ū	•	Encouraging the development of professional and/or research projects using the recent remote solutions for
		the internet computing

- Undertaking professional tasks under partial autonomy and total responsibility;
- Having suitable learning skills to continue to study and to develop a reflective, analytical attitude upon the professional profile.

7. Course objectives (resulting from the specific competences to be acquired)

7.1 General course	This course presents the specific topics about the Process Control at Distance. After this						
objective	nodule, the master-student will be able to understand a comprehensive definition of process						
	control, and the context to the study of Process Control at Distance.						
7.2 Specific objectives	• Formation of knowledge in the field of Process Control at Distance, considered as a system						
	and viewed in terms of specific components;						
	Formation of skills and values necessary for constructivist approaches to the problems						
	specific to the Process Control at Distance.						

8. Content

8.1 Course	Teaching	Number of	Remarks
	methods	hours	
1. Methods for function and form identification (i.e., processes,	problematizing	2	
operands, objects, structure) within complex process-based systems	lecturing		
(HW, SW).	design and		
2. Object Process Methodology, language documentation for complex	develop in teams	2	
process-based systems modelling considering functional, structural	group working		
and behavioural aspects.	conversation		
3. Modelling with OPCAT (Object-Process CASE Tool) software.	case studies	4	
4. Design of Complex Process-based System architectures.		2	
5. Frameworks of Complex Process based System architectures.		2	
6. Architectures Modelling for supporting integration of multitude		2	
processes based on SysML Diagrams.			

Bibliography

- [1]. Vizitiu, C.; Bîră, C.; Dinculescu, A.; Nistorescu, A.; Marin, M. Exhaustive Description of the System Architecture and Prototype Implementation of an IoT-Based eHealth Biometric Monitoring System for Elders in Independent Living. Sensors 2021, 21, 1837. https://doi.org/10.3390/s21051837
- [2]. Vizitiu, C. (2019). Systems Engineering and Organizational Assessment Solutions ensuring Sustainability within Telemedicine Context. Book published in Springer Verlag (Springer Nature), Germany, ISBN 9783658235383 (online) 9783658235376 (print), DOI 10.1007/978-3-658-23538-3.
- [3]. Crawley, E., Cameron, B., Selva, D. (2015). System Architecture: Strategy and Product Development for Complex Systems, Global Edition, Publisher Pearson, ISBN: 9780136462989.
- [4]. Văleanu, V., Vasiliu, V., Vizitiu, C., Marin, M., Nistorescu, A., Dinculescu, A., Vizitiu, A., Ion, T. (2015). Portable Telemedicine Workstation Full Prototype for Technological Transfer in Critical Interventions Services. Published in ISI Proceedings of the 5th IEEE International Conference on E-Health and Bioengineering EHB 2015, Iaşi, Romania, November 19-21.
- [5]. Dov Dori (2002). Object-Process Methodology A Holistic Systems Paradigm. Springer 2002, ISBN 3-540-65471.
- [6]. Automation Systems and Integration: Object-Process Methodology ISO/PAS 19450:2015(en): https://www.iso.org/obp/ui/#iso:std:iso:pas:19450:ed-1:v1:en
- [7]. Hein, A.M., Karban, R., Weilkiens, T., Zamparelli, M., Hauber, R. (2011). Cookbook for MBSE with SysML. INCOSE -SE2 MBSE Telescop Challenge Team. DOI: 10.13140/2.1.4291.2324. https://www.researchgate.net/publication/268977905.

https://www.researchgate.net/publication/2089/7905.	I		
8.2 Seminar/ laboratory/ project	Teaching-learning	Number of	Remarks
	methods	hours	
1. Function and form identification (i.e., processes, operands,	problematizing	4	
objects, structure) within specific complex process-based systems	design and		
(HW, SW).	develop in teams		
2. Process representation and Object Process Diagrams (OPD)	group working	4	
Definition on complex process-based systems.	conversation		
3. Types of processes and structures in OPCAT (Object-Process CASE	case studies	4	
Tool) software.			
4. Developing Object Process Diagrams (OPD) in OPCAT (Object-		8	
Process CASE Tool) software.			

5. Documentation and Implementations based on complex process-	4	
based System architectures Frameworks.		
6. Architectures Modelling for supporting integration of multitude	4	
processes based on SysML Diagrams.		

Bibliography

- [1]. Vizitiu, C.; Bîră, C.; Dinculescu, A.; Nistorescu, A.; Marin, M. Exhaustive Description of the System Architecture and Prototype Implementation of an IoT-Based eHealth Biometric Monitoring System for Elders in Independent Living. Sensors 2021, 21, 1837. https://doi.org/10.3390/s21051837
- [2]. Vizitiu, C. (2019). Systems Engineering and Organizational Assessment Solutions ensuring Sustainability within Telemedicine Context. Book published in Springer Verlag (Springer Nature), Germany, ISBN 9783658235383 (online) 9783658235376 (print), DOI 10.1007/978-3-658-23538-3.
- [3]. Crawley, E., Cameron, B., Selva, D. (2015). System Architecture: Strategy and Product Development for Complex Systems, Global Edition, Publisher Pearson, ISBN: 9780136462989.
- [4]. Văleanu, V., Vasiliu, V., Vizitiu, C., Marin, M., Nistorescu, A., Dinculescu, A., Vizitiu, A., Ion, T. (2015). Portable Telemedicine Workstation Full Prototype for Technological Transfer in Critical Interventions Services. Published in ISI Proceedings of the 5th IEEE International Conference on E-Health and Bioengineering EHB 2015, Iaşi, Romania, November 19-21.
- [5]. Dov Dori (2002). Object-Process Methodology A Holistic Systems Paradigm. Springer 2002, ISBN 3-540-65471.
- [6]. Automation Systems and Integration: Object-Process Methodology ISO/PAS 19450:2015(en): https://www.iso.org/obp/ui/#iso:std:iso:pas:19450:ed-1:v1:en
- [7]. Hein, A.M., Karban, R., Weilkiens, T., Zamparelli, M., Hauber, R. (2011). Cookbook for MBSE with SysML. INCOSE -SE2 MBSE Telescop Challenge Team. DOI: 10.13140/2.1.4291.2324. https://www.researchgate.net/publication/268977905.

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

- the course follows the ACM and IEEE Curricula Recommendations for Computer Science studies (Computer Science 2013, Computer Engineering 2016, Information Systems 2010, Software Engineering 2014);
- the content of the course is treated accordingly with the national and European directives regarding the professional and transversal competences (NQFHE, Nov. 2011)

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of the final grade
10.4 Course	 Achieving the discipline objectives Proving the specific discipline competences Accurate and fluent use of specific terms 	Final evaluation by oral examination	40%
10.5 Seminar/ laboratory/ project		Active participation during the semester in the course / seminar / laboratory activities	40%
		Final evaluation by laboratory theme	20%
10.6 Minimal per	formance standard		
Base knowled	dge and skills about wireless systems mana	gement	

This course outline was certified in the Department Board meeting on 26/09/2024 and approved in the Faculty Board meeting on 26/09/2024.

Conf.dr Ion Gabriel Stan Dean 	Conf. Dr. Nicuşor Minculete Head of Department
Dr. Eng. Cristian VIZITIU (Faculty IESC)	Dr. Eng. Cristian VIZITIU (Faculty IESC)
Course holders	Holders of laboratory

Note:

1) Field of study – select one of the following options: BA/MA/PhD. (to be filled in according to the forceful classification list for study programmes);

- ²⁾ Study level choose from among: BA/MA/PhD;
- ³⁾ Course status (content) for the BA level, select one of the following options: FC (fundamental course) / DC (course in the study domain)/ SC (speciality course)/ CC (complementary course); for the MA level, select one of the following options: PC (proficiency course)/ SC (synthesis course)/ AC (advanced course);
- ⁴⁾ Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 30 study hours (teaching activities and individual study).