Some new results on the coefficients of cyclotomic and of inverse cyclotomic polynomials

Dorin Andrica

SSMI 2025 Research Seminar Transilvania University, Romania

July 10, 2025

Transilvania University of Brasov

1/39

Key source of information

Cyclotomic Polynomials			c Polynomials	
	8.1	Arith	metic functions	
	8.2	The M	Abbius µ function	
	8.3	Ramanujan sums		
	8.4			
	8.5			
	8.6	The integral formula for the coefficients of $\Phi_n \dots 244$		
		8.6.1	The integral formula	
		8.6.2	Some applications of the integral formula	
	8.7	The in	werse cyclotomic polynomial	
		8.7.1	The coefficients of Ψ_n	
		8.7.2	The integral formula for the coefficients of Ψ_n	
		8.7.3	Some applications of the integral formula	
	8.8	8 Upper bounds for the coefficients		
		8.8.1	Upper bounds for the coefficients of Φ_n	
		8.8.2	Upper bounds for the coefficients of Ψ_n	
		8.8.3	Numerical simulations	
	8.9	Some special classes of cyclotomic and inverse cyclotomic		
		polyr	omials	
		8.9.1	Coefficients of binary cyclotomic polynomials 269	
		8.9.2	Coefficients of ternary polynomials Φ_n	
		8.9.3	Coefficients of binary inverse cyclotomic polynomials . 274	
		8.9.4	Coefficients of ternary inverse cyclotomic polynomials 274	
		8.9.5	Numerical simulations	

Overview

Occupation Cyclotomic polynomials

- Integral formula
- Recursive formula
- Inverse cyclotomic polynomials
 - Integral formula
 - Recursive formula
- Binary and ternary polynomials

Joint work with Ovidiu Bagdasar (University of Derby, UK)

Presentation mainly based on the following resources

Andrica, D., and Bagdasar, O., On cyclotomic polynomial coefficients, Malays. J. Math. Sci., in: Proceedings of "Groups, Group Rings, and Related Topics - 2017" (GGRRT 2017), 19–22 Nov 2017, Khorfakan, UAE **14**(3) (2020), 389–402. Andrica, D., and Bagdasar, O., Some remarks on a general family of complex polynomials, Appl. Anal. Discr. Math. **13** (2019), no. 1, 605–618.

Andrica, D., and Bagdasar, O., Some remarks on the coefficients of cyclotomic polynomials.

In: J. Guàrdia, N. Minculete, D. Savin, M. Vela, A. Zekhnini (eds.), New Frontiers in Number Theory and Applications, Trends in Mathematics, Birkhäuser, Cham, 29–49, 2024.

Andrica, D., Bagdasar, O., Turcaș, G.-C., Topics on Discrete Mathematics and Combinatorics, Cluj University Press, 2nd Edition, 2024.

Andrica, D., Bagdasar, O., and Țurcaș, G.-C., An integral formula for the coefficients of the inverse cyclotomic polynomial, An. Șt. Univ. Ovidius Constanța Ser. Mat. **33**(1) (2025), 33–48.

The Cauchy integral formula (1)

The Cauchy integral formula is a key result in complex analysis and it is also an important tool in analytic combinatorics.

A function $h: G \to \mathbb{C}$ is called *meromorphic at* z_0 if h(z) can be written as a quotient of two analytic functions f, g in a neighbourhood \mathcal{U} of z_0 :

$$\forall z \in \mathcal{U} \setminus \{z_0\} : h(z) = \frac{f(z)}{g(z)}.$$

In this case, for all $z \neq z_0$ in a disk centered at z_0 , we also have

$$h(z) = \sum_{n \ge -m} c_n (z - z_0)^n$$

If *m* is the largest number for which $c_{-m} \neq 0$ in this series expansion, then z_0 is called a *pole of order m*.

The coefficient c_{-1} of $(z - z_0)^{-1}$ in this series expansion is called *the* residue of h at the point z_0 , also denoted as $\text{Res}(h, z_0)$.

The Cauchy integral formula: (2) Residue Theorem

The important Residue theorem due to Cauchy relates global properties of a meromorphic function, its integral along closed curves, to purely local characteristics at designated points, the residues at poles.

Theorem (Cauchy's residue theorem)

Let h(z) be a meromorphic function in the region Ω and let Γ be a simple loop in Ω along which the function is analytic. Then

$$\frac{1}{2\pi i} \int_{\Gamma} h(z) \, \mathrm{d}z = \sum_{s} \operatorname{Res}(h(z), z = s),$$

where the sum is extended to all poles of s of h(z) enclosed by Γ .

The Cauchy integral formula (3)

Theorem (Cauchy's integral formula)

Let $f(z) = \sum_{j\geq 0} c_j z^j$ be analytic in a disk centered at 0, and let Γ be a curve in the interior of this disk, which winds around exactly once (in positive orientation), then we have

$$c_j = rac{1}{2\pi i} \int_\Gamma rac{f(z)}{z^{j+1}} \,\mathrm{d}z.$$

Theorem (Cauchy's multi-variable integral formula) Let $F(z_1, ..., z_k) = \frac{U(z_1, ..., z_k)}{V(z_1, ..., z_k)} = \sum_{j_1, ..., j_k \in \mathbb{Z}} c_{j_1, ..., j_k} z_1^{j_1} \cdots z_k^{j_k}$, be a rational function. If $V \neq 0$ at the origin of \mathbb{R}^k , then the coefficients $c_{j_1, ..., j_k} = \frac{1}{(2\pi i)^k} \int_T \frac{F(z_1, ..., z_k)}{z_1 \cdots z_k} z_1^{-j_1} \cdots z_k^{-j_k} dz_1 \wedge \cdots \wedge dz_k$,

with T a product of small circles around the coordinate axes of \mathbb{R}^k .

The cyclotomic polynomial

The *n*-th cyclotomic polynomial Φ_n is defined by

$$\Phi_n(z) = \prod_{\substack{1 \le k \le n-1 \\ \gcd(k,n)=1}} (z - \zeta_n^k) = \sum_{j=0}^{\varphi(n)} c_j^{(n)} z^j,$$
(1)

• $\zeta_n = \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}$ the first primitive *n*th root of the unity. • degree of Φ_n : $\varphi(n)$, where φ denotes Euler's totient function.

First six cyclotomic polynomials:

$$\begin{split} \Phi_1(z) &= z - 1, \ \Phi_2(z) = z + 1, \ \Phi_3(z) = z^2 + z + 1, \\ \Phi_4(z) &= z^2 + 1, \ \Phi_5(z) = z^4 + z^3 + z^2 + z + 1, \ \Phi_6(z) = z^2 - z + 1. \end{split}$$

It is well-known that every cyclotomic polynomial

- has integer coefficients
- is irreducible over \mathbb{Z} ([31, Theorem 1, p.195]
- Φ_n is palindromic and monic

Applications of cyclotomic polynomials

- Solution of the problem of which regular *n*-gons are constructible with straightedge and compass (Gauss–Wantzel theorem).
- Elementary proofs of the existence of infinitely many prime numbers equal to 1 or -1 modulo *n* (special case of P.A.P).
- Witt's proof of Wedderburn's little theorem that every finite domain is a field.
- The "cyclotomic criterion" in the study of primitive divisors of Lucas and Lehmer sequences.
- Lattice-based cryptography.

• Polynomials up to n < 105 only have 0, 1 and -1 as coefficients.

- Polynomials up to n < 105 only have 0, 1 and -1 as coefficients.
- Mignotti 1883:
 - -2 first appears as the coefficient of z^7 of Φ_{105}
 - 2 first appears as a coefficient in Φ_{165} .
 - $\Phi_n(z)$ only has coefficients 0 and ± 1 , if n = pq with $p \neq q$ primes.
 - All coefficients of $\Phi_n(z)$ do not exceed 2 in absolute value for n < 385.

- Polynomials up to n < 105 only have 0, 1 and -1 as coefficients.
- Mignotti 1883:
 - -2 first appears as the coefficient of z^7 of Φ_{105}
 - 2 first appears as a coefficient in Φ_{165} .
 - $\Phi_n(z)$ only has coefficients 0 and ± 1 , if n = pq with $p \neq q$ primes.
 - All coefficients of $\Phi_n(z)$ do not exceed 2 in absolute value for n < 385.
- Bang 1895: For n = pqr with p < q < r odd primes, no coefficient of Φ_n is larger than p - 1.
- Schur 1931: The coefficients of cyclotomic polynomials can be arbitrarily large in absolute value.

- Polynomials up to n < 105 only have 0, 1 and -1 as coefficients.
- Mignotti 1883:
 - -2 first appears as the coefficient of z^7 of Φ_{105}
 - 2 first appears as a coefficient in Φ_{165} .
 - $\Phi_n(z)$ only has coefficients 0 and ± 1 , if n = pq with $p \neq q$ primes.
 - All coefficients of $\Phi_n(z)$ do not exceed 2 in absolute value for n < 385.
- Bang 1895: For n = pqr with p < q < r odd primes, no coefficient of Φ_n is larger than p - 1.
- Schur 1931: The coefficients of cyclotomic polynomials can be arbitrarily large in absolute value.

Theorem (Suzuki 1987 [48])

Every integer number can be a coefficient of a cyclotomic polynomial of a certain degree.

The history of these early results can be found in [35]. More details are given in [27], [28], [32], and to the monograph [17].

Dorin Andrica (UBB Cluj, Romania) Results on (inverse) cyclotomic polynomials

9/39

Algebraic form of $\Phi_n(z)$

Writing the polynomial $\Phi_n(z)$ in algebraic form, we obtain:

$$\Phi_n(z) = \sum_{j=0}^{\varphi(n)} c_j^{(n)} z^j,$$

where $c_i^{(n)}$, $j = 0, 1, ..., \varphi(n)$, are the coefficients of $\Phi_n(z)$.

In order to get a unitary formula for $c_j^{(n)}$, we introduce the function

$$\Lambda_n(t) = \prod_{\substack{1 \le k \le n-1 \\ \gcd(k,n)=1}} \sin\left(t - \frac{k\pi}{n}\right).$$
(2)

For n = 1, 2 one obtains the following expressions:

$$\Lambda_1(t) = \sin(t - \pi) = -\sin t,$$

$$\Lambda_2(t) = \sin\left(t - \frac{\pi}{2}\right) = -\cos t.$$

The function $\Lambda_n(t)$

Figure: $\Lambda_n(t)$ $(0 \le t \le \pi)$ for (a) n = 2; (b) n = 3; (c) n = 4; (d) n = 5.

Dorin Andrica (UBB Cluj, Romania) Results on (ir

Results on (inverse) cyclotomic polynomials

11/39

(3)

Integral formula for the coefficients of $\Phi_n(z)$

To prove the main result we use the following identity.

Lemma

Let $n \ge 3$ be a positive integer. The following formula holds:

$$\sum_{\substack{1 \le k \le n-1 \\ \gcd(k,n)=1}} k = \frac{n}{2}\varphi(n).$$
(4)

Theorem (Andrica & Bagdasar, MJMS 2020, Theorem 2.1) The coefficients $c_j^{(n)}$ are given by the following integral formula: $c_j^{(n)} = \frac{2^{\varphi(n)}}{\pi} \int_0^{\pi} \Lambda_n(t) \cdot \cos(\varphi(n) - 2j) t \, dt, \quad j = 0, 1, \dots, \varphi(n).$ (5)

Reciprocity of coefficients of $\Phi_n(z)$

The coefficients of the cyclotomic polynomial are known to be reciprocal. Here we give an elegant proof based on the integral formula (5).

Theorem (Andrica & Bagdasar, MJMS 2020, Theorem 2.2)

The cyclotomic polynomial $\Phi_n(z)$ is reciprocal, that is its coefficients satisfy the following symmetry relations

$$c_j^{(n)} = c_{\varphi(n)-j}^{(n)}, \quad j = 0, 1, \dots, \varphi(n).$$

Proof. Using formula (5), for every $j = 0, 1, ..., \varphi(n)$, we have

$$\begin{aligned} c_{\varphi(n)-j}^{(n)} &= \frac{2^{\varphi(n)}}{\pi} \int_0^{\pi} \Lambda_n(t) \cdot \cos\left(\varphi(n) - 2(\varphi(n) - j)\right) t \, \mathrm{d}t \\ &= \frac{2^{\varphi(n)}}{\pi} \int_0^{\pi} \Lambda_n(t) \cdot \cos\left(2j - \varphi(n)\right) t \, \mathrm{d}t \\ &= \frac{2^{\varphi(n)}}{\pi} \int_0^{\pi} \Lambda_n(t) \cdot \cos\left(\varphi(n) - 2j\right) t \, \mathrm{d}t = c_j^{(n)}. \end{aligned}$$

Direct/Alternate sum of coefficients. Mid-term of $\Phi_n(z)$ Theorem (Andrica & Bagdasar, MJMS 2020, Theorem 3.1) Let $n \ge 3$. Expression $\Phi_n(1)$ has the following integral formula:

$$\Phi_n(1) = \sum_{j=0}^{\varphi(n)} c_j^{(n)} = \frac{2^{\varphi(n)}}{\pi} \int_0^{\pi} \Lambda_n(t) \cdot \frac{\sin(\varphi(n) + 1)t}{\sin t} \, \mathrm{d}t.$$
(6)

Theorem (Andrica & Bagdasar, MJMS 2020, Theorem 3.2) Let $n \ge 3$. Terms $\Phi_n(-1)$ have the following integral formula:

$$\Phi_n(-1) = \sum_{j=0}^{\varphi(n)} c_j^{(n)}(-1)^j = \frac{2^{\varphi(n)}}{\pi} \int_0^{\pi} \Lambda_n(t) \cdot \frac{\cos(\varphi(n)+1)t}{\cos t} \, \mathrm{d}t.$$
(7)

Mid-terms integral formula

$$m_n := c_{\frac{\varphi(n)}{2}}^{(n)} = \frac{2^{\varphi(n)}}{\pi} \int_0^{\pi} \Lambda_n(t) \, \mathrm{d}t.$$
 (8)

The inverse cyclotomic polynomials

For every $n \in \mathbb{N}$, the inverse cyclotic polynomials $\Psi_n(z)$ are defined by

$$\Psi_n(z) = \prod_{\substack{1 \le j \le n \\ (j,n) > 1}} \left(z - \zeta_n^j \right) = \frac{z^n - 1}{\Phi_n(z)} = \sum_{k=0}^{n - \varphi(n)} d_k^{(n)} z^k \tag{9}$$

• $\Psi_n(z)$ has degree $n - \varphi(n)$, with integer coefficients.

3 If *n* is a prime, then
$$\Psi_n(z) = z - 1$$
.

③ Ψ_n is antipalindromic and monic.

The first inverse cyclotomic polynomials (*n* composite) are given by

$$\Psi_1(z) = 1, \ \Psi_4(z) = z^2 - 1, \ \Psi_6(z) = z^4 + z^3 - z - 1, \ \Psi_8(z) = z^4 - 1$$

 $\Psi_9(z) = z^3 - 1, \ \Psi_{10}(z) = z^6 + z^5 - z - 1, \ \Psi_{12}(z) = z^8 + z^6 - z^2 - 1$

Function $\Gamma_n(t)$

In order to get a unitary formula for $d_j^{(n)}$, we introduce the function

$$\Gamma_n(t) = \prod_{\substack{1 \le k \le n \\ \gcd(k,n) > 1}} \sin\left(t - \frac{k\pi}{n}\right).$$
(10)

The first non-trivial values are n = 4 and n = 6 where we have

$$\begin{split} \Gamma_4(t) &= \sin\left(t - \frac{2\pi}{4}\right) \sin\left(t - \frac{4\pi}{4}\right) \\ &= \sin\left(t - \frac{\pi}{2}\right) \sin\left(t - \pi\right) = \sin t \cdot \cos t = \frac{1}{2}\sin 2t. \\ \Gamma_6(t) &= \sin\left(t - \frac{2\pi}{6}\right) \sin\left(t - \frac{3\pi}{6}\right) \sin\left(t - \frac{4\pi}{6}\right) \sin\left(t - \frac{6\pi}{6}\right) \\ &= \sin\left(t - \frac{\pi}{3}\right) \sin\left(t - \frac{\pi}{2}\right) \sin\left(t - \frac{2\pi}{3}\right) \sin\left(t - \pi\right) \\ &= \frac{1}{8} \left(\sin 2t + \sin 4t\right). \end{split}$$

Integral formula for the coefficients of $\Psi_n(z)$

To prove the coefficient formula we use the identity

$$\sum_{\substack{1 \le k \le n \\ \gcd(k,n) > 1}} k = \frac{n}{2} \left(n + 1 - \varphi(n) \right), \quad n \ge 3.$$
(11)

Theorem

The coefficients $d_j^{(n)}$, $j = 0, 1, ..., n - \varphi(n)$, of the inverse cyclotomic polynomial $\Psi_n(z)$ are given by the following integral formula:

$$d_j^{(n)} = (-1)^{n+1} \frac{2^{n-\varphi(n)}}{\pi} \int_0^\pi \Gamma_n(t) \cdot \sin(n-\varphi(n)-2j) t \, \mathrm{d}t.$$
(12)

Antireciprocity of coefficients of $\Psi_n(z)$

The coefficients of the inverse cyclotomic polynomial are antisymmetric.

Theorem (Ψ_n is antipalindromic)

The inverse cyclotomic polynomial $\Psi_n(z)$ is antipalindromic, that is its coefficients satisfy the following antisymmetry relation

$$d_{j}^{(n)} = -d_{n-\varphi(n)-j}^{(n)}, \quad j = 0, 1, \dots, n-\varphi(n).$$
(13)

Proof. Using formula (12), for every $j = 0, 1, ..., \varphi(n)$, we have

$$\begin{aligned} d_{n-\varphi(n)-j}^{(n)} &= (-1)^{n+1} \frac{2^{n-\varphi(n)}}{\pi} \int_0^\pi \Gamma_n(t) \sin\left(n-\varphi(n)-2(n-\varphi(n)-j)\right) t \, \mathrm{d}t \\ &= (-1)^{n+1} \frac{2^{n-\varphi(n)}}{\pi} \int_0^\pi \Gamma_n(t) \sin\left(2j+\varphi(n)-n\right) t \, \mathrm{d}t \\ &= -(-1)^{n+1} \frac{2^{n-\varphi(n)}}{\pi} \int_0^\pi \Gamma_n(t) \sin\left(n-\varphi(n)-2j\right) t \, \mathrm{d}t \\ &= -d_j^{(n)}. \end{aligned}$$

Explicit formulas of coefficients of Φ_n and Ψ_n

Theorem (Cyclotomic polynomials, Endo 1974 [26])

The following formula holds

$$c_m^{(n)} = \sum_{i_1+2i_2+\dots+mi_m=m} (-1)^{i_1+\dots+i_m} \binom{\mu(n)}{i_1} \binom{\mu(n/2)}{i_2} \cdots \binom{\mu(n/m)}{i_m}, \quad (14)$$

where (i_1, \ldots, i_m) runs over all the non-negative integral solutions of the equation $i_1 + 2i_2 + \cdots + mi_m = m$, for m a positive integer.

Theorem (Inverse cyclotomic polynomials)

For every m, $n \in \mathbb{N}$, $n \ge 1$, the following formula holds

$$d_m^{(n)} = \sum_{i_1+2i_2+\ldots+mi_m=m} (-1)^{i_1+\cdots+i_m+1} \binom{-\mu(n)}{i_1} \binom{-\mu(n/2)}{i_2} \cdots \binom{-\mu(n/m)}{i_m}$$
(15)

Recursive formulas

The following recursive formulae for the coefficients of Φ_n and Ψ_n are proved in [10], [11, Section 8.5], and [9], respectively

Theorem (Cyclotomic polynomials)

The following relation holds for every $k = 2, ..., \varphi(n)$:

$$c_{k}^{(n)} = -\frac{1}{k} \left[\rho(n,k) + \rho(n,k-1)c_{1}^{(n)} + \dots + \rho(n,1)c_{k-1}^{(n)} \right].$$
(16)

Theorem (Inverse cyclotomic polynomials)

The following relation holds for every $k = 2, ..., n - \varphi(n)$:

$$d_{k}^{(n)} = \frac{1}{k} \left[-\rho(n,k) + \rho(n,k-1)d_{1}^{(n)} + \dots + \rho(n,1)d_{k-1}^{n} \right].$$
(17)

Here $\rho(n, j)$ denote the Ramanujan sums.

Ramanujan Sums

The **Möbius function** μ is defined by

$$\mu(n) = \begin{cases} 1 & \text{if } n = 1, \\ (-1)^k & \text{if } n = p_1 p_2 \cdots p_k, \\ 0 & \text{if } n = p^2 m, \end{cases}$$

where p is prime and p_1, \ldots, p_k are distinct prime numbers.

For positive integers n and j, the **Ramanujan sum** is defined as

$$ho(n,j) = \sum_{\gcd(a,n)=1} e^{2\pi i \frac{a}{n} j},$$

where the sum is over all integers a with $1 \le a \le n$ and gcd(a, n) = 1. The following formula due to Hölder

$$\rho(n,j) = \frac{\mu\left(\frac{n}{\gcd(n,j)}\right)\varphi(n)}{\varphi\left(\frac{n}{\gcd(n,j)}\right)}$$

often appears under the name of Von Sterneck's function.

Consequences

The previous formulas can be simplified as

Corollary (Cyclotomic polynomials)

The coefficients of Φ_n satisfy the following relation:

$$c_{k}^{(n)} = -\frac{\varphi(n)}{k} \left[\frac{\mu\left(\frac{n}{\gcd(n,k)}\right)}{\varphi\left(\frac{n}{\gcd(n,k)}\right)} + \frac{\mu\left(\frac{n}{\gcd(n,k-1)}\right)}{\varphi\left(\frac{n}{\gcd(n,k-1)}\right)} c_{1}^{(n)} + \dots + \frac{\mu\left(\frac{n}{\gcd(n,1)}\right)}{\varphi\left(\frac{n}{\gcd(n,1)}\right)} c_{k-1}^{(n)} \right].$$
(18)

Corollary (Inverse cyclotomic polynomials)

The coefficients of Ψ_n satisfy the following relation:

$$d_{k}^{(n)} = \frac{\varphi(n)}{k} \left[-\frac{\mu\left(\frac{n}{\gcd(n,k)}\right)}{\varphi\left(\frac{n}{\gcd(n,k)}\right)} + \frac{\mu\left(\frac{n}{\gcd(n,k-1)}\right)}{\varphi\left(\frac{n}{\gcd(n,k-1)}\right)} d_{1}^{(n)} + \dots + \frac{\mu\left(\frac{n}{\gcd(n,1)}\right)}{\varphi\left(\frac{n}{\gcd(n,1)}\right)} d_{k-1}^{(n)} \right]$$
(19)

Results for binary polynomials Φ_n and Ψ_n

Suppose n = pq, where p < q are distinct primes. In this case, the polynomials Φ_n are said to be **binary** and has the following expression

$$\Phi_{pq}(z) = \frac{(z^{pq}-1)(z-1)}{(z^p-1)(z^q-1)}.$$

Let *u* be the unique integer such that 0 < u < p and $uq \equiv -1 \pmod{p}$. The number of positive coefficients of $\Phi_{pq}(z)$ is $\frac{(p-u)(uq+1)}{p}$ [24].

Theorem (Lam 1996 [34])

For n = pq, where p < q are primes, write r, s for the unique positive integers such that $\varphi(n) = (p-1)(q-1) = pr + qs$. Then the coefficients of Φ_n are given by the following formulas

$$c_{k}^{(n)} = \begin{cases} 1, \text{ if and only if } k = ip + jq \text{ with } i \in [0, r], j \in [0, s]; \\ -1, \text{ if and only if } k = ip + jq - pq, i \in [r + q, q - 1], j \in [s + 1, p - 1] \\ 0, \text{ otherwise.} \end{cases}$$

In this case $d_k^{(n)} = -1$ for all $1 \le k \le p - 1$, and that $d_p^{(n)} = d_{p+1}^{(n)} = 0$. The inverse cyclotomic polynomial has the following simple form

$$\Psi_n(z) = \frac{(z^p - 1)(z^q - 1)}{z - 1},$$

which is in turn equal to

$$\Psi_n(z) = z^{p+q-1} + \cdots + z^q - z^{p-1} - \cdots - z^2 - z - 1.$$

Hence, all the coefficients of these polynomials belong to the set $\{-1, 0, 1\}$, that is, the binary inverse cyclotomic polynomials are **flat**.

Results for ternary polynomials Φ_n and Ψ_n

Suppose n = pqr, where p < q < r are primes. The ternary polynomial Φ_n has the following form

$$\Phi_{pqr}(z) = \frac{(1-z^{pqr})(1-z^r)(1-z^q)(1-z^p)}{(1-z^{qr})(1-z^{pr})(1-z^{pq})(1-z)}.$$

Proposition (Coefficients of ternary cyclotomic polynomials)

1
$$c_k^{(n)} = 1$$
, for all $1 \le k \le p - 1$;
2 $c_p^{(n)} = c_{p+1}^{(n)} = 0$.

Proposition (Results for Ramanujan triples)

For every
$$n = pqr$$
 where (p, q, r) is a Ramanujan triple, we have
 $c_k^{(n)} = 0$ for every $p < k < q$;
 $c_k^{(n)} = -1$ for every $q \le k < r$;
 $c_r^{(n)} = -2$.

Definition

We call a triple of natural numbers (p, q, r) a **Ramanujan triple** if p, q, r are primes and p < q < r < 2p.

In his landmark 1919 paper [45], Ramanujan presented a novel proof of Bertrand's postulate, together with a generalization.

An important consequence is that for all $x \ge 11$ one has

$$\pi(x) - \pi\left(\frac{x}{2}\right) \ge 3,$$

where π represents the prime-counting function. By considering arbitrarily large values of x, there exist infinitely many distinct Ramanujan triples.

Definition

We call a triple of natural numbers (p, q, r) a **Ramanujan triple** if p, q, r are primes and p < q < r < 2p.

In his landmark 1919 paper [45], Ramanujan presented a novel proof of Bertrand's postulate, together with a generalization.

An important consequence is that for all $x \ge 11$ one has

$$\pi(x) - \pi\left(\frac{x}{2}\right) \ge 3,$$

where π represents the prime-counting function. By considering arbitrarily large values of x, there exist infinitely many distinct Ramanujan triples.

By Ramanujan's result, there is an infinite family of n = pqr for which $c_r^{(n)} = -2$. While the first Ramanujan triple is (7, 11, 13), where n = 1001, this polynomial has $c_{13}^{(1001)} = -2$ and $c_{199}^{(1001)} = -2$. but the polynomial has no coefficients of absolute value strictly greater than 2. However, for the Ramanujan triple (17, 19, 29) and n = 9367 there are coefficients of larger absolute value such as $c_{3107}^{(9367)} = -4$.

Results for ternary polynomials Ψ_n

Suppose n = pqr, where p < q < r are primes. The ternary polynomial Ψ_n has the following form

$$\Psi_n(z) = \frac{(z^{pq}-1)(z^{qr}-1)(z^{rp}-1)(z-1)}{(z^p-1)(z^q-1)(z^r-1)}.$$

Proposition (Coefficients of ternary inverse cyclotomic polynomials)

•
$$d_1^{(n)} = 1$$
 and $d_k^{(n)} = 0$, for all $2 \le k \le p - 1$;
• $d_p^{(n)} = -1$ and $d_{p+1}^{(n)} = 1$.

Proposition (Results for Ramanujan triples)

For every
$$n = pqr$$
 where (p, q, r) is a Ramanujan triple, we have
1 $d_k^{(n)} = 0$ for all $p + 2 \le k \le q - 1$ and $d_q^{(n)} = -1$;
2 $d_{q+1}^{(n)} = 1$ and $d_k^{(n)} = 0$ for all $q + 2 \le k < r$;
3 $d_r^{(n)} = -1$.

We note that, combined with Ramanujan's result on the infinitude of such triples, these propositions give precise values for the first r terms in an infinite family of inverse cyclotomic polynomials.

One would be mislead to think that for n = pqr, where (p, q, r) is a Ramanujan triple, the inverse cyclotomic polynomials are **flat**. However, this is **NOT** true.

Indeed, computations with Magma confirmed that

- for $n = 11 \cdot 13 \cdot 19$ we have $d_{53}^{(n)} = 2$;
- for the Ramanujan triple (101, 103, 109) where n = 1133927 we obtain $d_{15651}^{(n)} = -16$.

Some computational remarks

Arnold and Monagan [1] presented three optimized algorithms for computing the coefficients of the *n*th cyclotomic polynomial:

- Polynomial divisions optimized with FFT.
- Quotient of sparse power series, improved by treating $\Phi_n(X)$ as a truncated power series.
- "Big prime algorithm" that generates terms sequentially to reduce memory cost.

They produced extensive data on $\Phi_n(X)$ for $n = pqr < 10^8$.

With the recurrence relations above, and their analogues for the cyclotomic polynomials, one can easily go into much higher range for special cases of ternary cyclotomic polynomials. For instance, when

 $n = (10^8 + 7) \cdot (10^8 + 37) \cdot (10^8 + 39) = 1000000830000197500010101$

References I

- Arnold, A. and Monagan, M., *Calculating cyclotomic polynomials*, Mathematics of Computation, **80**(276) (2011), 2359–2379.
- [2] Andreescu, T., Andrica, D. *Complex Numbers from A to ... Z*, 2nd ed. Birkhäuser, Boston (2014).
- [3] Andrica, D., A combinatorial result concerning the product of two or more derivatives, Bull. Cal. Math. Soc., 92(4) (2000), 299–304.
- [4] Andrica, D., and Bagdasar, O., A new formula for the coefficients of Gaussian polynomials, An. Şt. Univ. Ovidius Constanța Ser. Mat. 27 (2019), no. 1, 25–35.
- [5] Andrica, D., and Bagdasar, O., On some results concerning the polygonal polynomials, Carpathian J. Math. 35 (2019), no. 1, 1–12.

References II

- [6] Andrica, D., and Bagdasar, O., Some remarks on a general family of complex polynomials, Appl. Anal. Discr. Math. 13 (2019), no. 1, 605–618.
- [7] Andrica, D., and Bagdasar, O., *Recurrent Sequences: Key Results, Applications and Problems*, Springer, 2020.
- [8] Andrica, D., and Bagdasar, O., On cyclotomic polynomial coefficients, Malays. J. Math. Sci., in: Proceedings of "Groups, Group Rings, and Related Topics - 2017" (GGRRT 2017), 19–22 Nov 2017, Khorfakan, UAE 14(3) (2020), 389–402.
- [9] Andrica, D., and Bagdasar, O., Remarks on the coefficients of the inverse cyclotomic polynomials, Mathematics 11 (2023), no. 17.

References III

- [10] Andrica, D., and Bagdasar, O., Some remarks on the coefficients of cyclotomic polynomials. In: J. Guàrdia, N. Minculete, D. Savin, M. Vela, A. Zekhnini (eds.), New Frontiers in Number Theory and Applications, Trends in Mathematics, Birkhäuser, Cham, 29–49, 2024.
- [11] Andrica, D., Bagdasar, O., and Ţurcaş, G.-C., *Topics on Discrete Mathematics and Combinatorics*, Cluj University Press, 2nd Edition, 2024.
- [12] Andrica, D., Bagdasar, O., and Ţurcaş, G.-C., An integral formula for the coefficients of the inverse cyclotomic polynomial, An. Şt. Univ. Ovidius Constanţa Ser. Mat. 33(1) (2025), 33-48.
- [13] Andrica, D., Ionaşcu, E.J., Some unexpected connections between Analysis and Combinatorics, in "Mathematics without boundaries. Topics in pure Mathematics", Th.M. Rassias and P. Pardalos, Eds., Springer, pp.1–20 (2014).

References IV

- [14] Andrica, D., Tomescu, I., On an integer sequence related to a product of trigonometric fuctions, and its combinatorial relevance, J.Integer Sequences, 5(2002), Article 02.2.4.
- [15] Andrica, D., Văcăreţu, D., Representation theorems and almost unimodal sequences, Studia Univ. Babeş-Bolyai, Mathematica, Volume LI, Number 4, 23–33 (2006).
- [16] Apostol, T. M., Introduction to Analytic Number Theory, Springer-Verlag, New York Heidelberg Berlin (1976).
- [17] Bachman, G. On the Coefficients of Cyclotomic Polynomials, Mem. Amer. Math. Soc., Vol. 106., no. 510(1993).
- [18] Bateman, P. T., Note on the coefficients of cyclotomic polynomial. Bull. Amer. Math. Soc. 55(12):1180–1181(1949).

References V

- [19] Bateman, P. T., Pomerance, C., Vaughan, R. C., On the coefficients of cyclotomic polynomial. In: *Coll. Math. Soc. J. Bolyai.*, 34, Budapest, 171–202(1981).
- [20] Beiter, M. The midterm coefficient of the cyclotomic polynomial $F_{pq}(x)$. Amer. Math. Monthly. 71(7):769–770(1964).
- [21] Beiter, M., Magnitude of the coefficients of the cyclotomic polynomials $\Phi_{pqr}(X)$. Amer. Math. Monthly. 75(4):370–372(1968).
- [22] Beiter, M., Magnitude of the coefficients of the cyclotomic polynomials $\Phi_{pqr}(X)$ II. Duke Math. Jour. 38(3):591–594(1971).
- [23] Bressoud, D. M., Unimodality of gaussian polynomials, Discrete mathematics, vol. 99, no. 1-3, pp. 17–24(1992).
- [24] Carlitz, L., The number of terms in the cyclotomic polynomial $F_{pq}(x)$. Amer. Math. Monthly. 73(9):979–981(1966).

References VI

- [25] Dresden, G., On the middle coefficient of a cyclotomic polynomial. *Amer. Math. Monthly.* 111(6):531–533(2004).
- [26] Endo, M., On the coefficients of the cyclotomic polynomials. Comment. Math. Univ. St. Pauli. 23:121–126(1974/75).
- [27] Erdös, P., On the coefficients of cyclotomic polynomials. Bull. Amer. Math. Soc. 52:179–184(1946).
- [28] Erdös, P., Vaughan, R. C., Bounds for r-th coefficients of cyclotomic polynomials. J. London Math. Soc. 8(2):393–400(1974).
- [29] Finch, S. R., Signum equations and extremal coefficients, people.fas.harvard.edu/ sfinch/
- [30] Grytczuk, A., Tropak, B., A numerical method for the determination of the cyclotomic polynomial coefficients. In: Pethö, A. et al. eds. *Computational Number Theory.* Berlin: de Gruyter, pp. 15–19(1991).

References VII

- [31] Ireland, K., Rosen, M., *A Classical Introduction to Modern Number Theory*. Graduate Texts in Mathematics, Springer(1990).
- [32] Ji, C. G., Li, W. P., Values of coefficients of cyclotomic polynomials. Discrete Mathematics. 308(23):5860–5863(2008).
- [33] Kirillov A. N., *Unimodality of generalized gaussian coefficients*, Arxhiv preprint.
- [34] Lam, T. Y., Leung, K. H., On the Cyclotomic Polynomial $\Phi_{pq}(x)$. Amer. Math. Monthly. 103(7):562–564(1996).
- [35] Lehmer, E., On the magnitude of the coefficients of the cyclotomic polynomial. *Bull. Amer. Math. Soc.* 42(6):389–392(1936).
- [36] Lehmer, D. H., Some properties of the cyclotomic polynomial. J. Math. Anal. Appl. 42(1):105–117(1966).

References VIII

- [37] Maier, H., The coefficients of cyclotomic polynomials. In: Analytic Number Theory (Allerton Park IL, 1989), Progr. Math. 85, Birkhäuser Boston (Boston MA, 1990), pp. 349–366(1990).
- [38] Maier, H., Cyclotomic polynomials with large coefficients. Acta Arith. 64:227–235(1993).
- [39] Maier, H., The size of the coefficients of cyclotomic polynomials. In: Analytic Number Theory (Allerton Park IL, 1995), Progr. Math. 139, Birkhäuser Boston (Boston MA, 1996), pp. 633–639(1996).
- [40] Möller, H., Über die *i*-ten Koeffizienten der Kreisteilungspolynome. Math. Ann. 188:26–38(1970).
- [41] Möller, H., Über die Koeffizienten des *n*-ten Kreisteilungspolynome. *Math. Z.* 119:34–40(1971).

References IX

- [42] Montgomery, H. L., Vaughan, R. C., The order of the *m*-th coefficients of cyclotomic polynomials. *Glasgow Math. J.* 27:143–159(1985).
- [43] OEIS Foundation Inc. (2011). The On-Line Encyclopedia of Integer Sequences. http://oeis.org.
- [44] O'Hara, K. M., Unimodality of gaussian coefficients: a constructive proof, Journal of Combinatorial Theory, Series A, vol. 53, no. 1, pp.29–52(1990).
- [45] Ramanujan, S., A proof of Bertrand's postulate, J. Indian Math. Soc., 11 (1919), 181–182.
- [46] Sándor, J., Crstici, B., Handbook of Number Theory II. Dordrecht, Netherlands: Kluwer (2004).

References X

- [47] Sullivan, B.D., On a Conjecture of Andrica and Tomescu, J.Integer Sequence 16, Article 13.3.1(2013).
- [48] Suzuki, J., On coefficients of cyclotomic polynomials. *Proc. Japan Acad. Ser. A Math. Sci.* 63:279–280(1987).
- [49] Vaughan, R. C., Bounds for the coefficients of cyclotomic polynomials. *Michigan Math. J.* 21:289–295(1975).