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Iterated Function Systems

Let E := (E, dE) denote a Banach space.

For n ∈ N, let Nn := {1, . . . , n}.
For a map f : E → E, the Lipschitz constant associated with f is

Lip(f) := sup
x,y∈E,x̸=y

∥f(x)− f(y)∥E
∥x− y∥E

.

f is called Lipschitz if Lip(f) < +∞ and a contraction if Lip(f) < 1.

Iterated function system (IFS): A collection of functions

F := Fn := {fi : E → E : i ∈ Nn}.

The IFS (E;F) is called contractive if all f ∈ F are contractions.
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Hyperspace of Nonempty Compact Subsets

Let E be a Banach space.

Hyperspace H(E) of Compact Subsets of E: collection of all nonempty
compact subsets of E.

The Hausdorff-Pompeiu metric dH on H(E) is defined by

dH(A,B) := max

{
max
a∈A

min
b∈B

∥a− b∥,max
b∈B

min
a∈A

∥b− a∥
}
.

The completeness of E implies that (H(E), dH) is a complete metric
space.
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Contraction on (H(E), dH)

Let F := {fi : E → E : i ∈ Nn} be a contractive IFS.

The set-valued mapping F : H(E) → H(E)

F(A) :=

n⋃
i=1

fi(A).

is contractive with Lipschitz constant Lip(F) = max
i∈Nn

Lip(fi) < 1.

Banach Fixed Point Theorem =⇒ F has a unique fixed point F

F = F(F ) =

n⋃
i=1

fi(F )

(
=

n⋃
i1=1

· · ·
n⋃

ik=1

fi1 ◦ · · · ◦ fik(F )

)
.

F is called the attractor or the fractal generated by the IFS (E;F).

F = lim
n→∞

Fn(A), A ∈ H(E) arbitrary
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Fractal Interpolation Functions (Barnsely 1986)

Let E := R2 with the Euclidean norm. Given are

• [a, b] ⊂ R with a < b;

• X := [a, b]× R ⊂ E;

• Y := {(xν , yν) ∈ X : a = x0 < x1 < · · · < xn−1 < xn = b};
• si ∈ (−1, 1), i ∈ Nn (free parameters);

• A := [a, b]× [a, b].

For i ∈ Nn, denote by Ai the parallelogram with vertices

(xi−1, yi−1), (xi, yi), (xi−1, yi−1 + si(b− a)), (xi, yi + si(b− a)).

There exists a unique affine mapping fi : X → X with fi(A) = Ai.
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fi

(
x
y

)
=

(
ai 0
ci si

)(
x
y

)
+

(
αi

βi

)
, i ∈ NN ,

where

ai :=
xi − xi−1

b− a
, ci :=

yi − yi−1 − si (yn − y0)

b− a
,

αi :=
bxi−1 − axi

b− a
, βi :=

byi−1 − ayi − si (by0 − ayn)

b− a
.

There exists a norm - equivalent to the Euclidean norm - such that
Lip(fi) ≤ q < 1. Thus, the IFS (X,F) with F := {fi : i ∈ Nn}
possesses a unique fixed point G ∈ H(X).

G is the graph of a continuous function ψ : [a, b] → R interpolating
the set Y : ψ(xν) = yν , ν ∈ {0} ∪ Nn.

Barnsley, M.F. Fractal Functions and Interpolation, Constr. Approx. (1986) 2, 303–329.
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Example of Construction of FIF
Let n := 3, X := [0, 1]× R.

Y := {(0, 0), ( 12 ,
7
10 ), (

7
10 ,−

1
10 ), (1,

3
10 )}.

Let (s1, s2, s3) := (35 ,−
1
2 ,

3
4 ).
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Figure: The geometric construction of a fractal interpolation function.
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As the graph of ψ is, in general, a fractal set these functions were
called by Barnsley fractal interpolation functions.

Since G = graphψ and satisfies a fixed point equation, one has

graphψ =

n⋃
i=1

fi(graphψ)

and, therefore,(
x̄

ψ(x̄)

) ∣∣∣∣∣
x̄∈[xi−1,xi]

=

(
ai 0
ci si

)(
x

ψ(x)

) ∣∣∣∣∣
x∈[a,b]

+

(
αi

βi

)
.
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Let
li : [a, b] → [xi−1, xi], x 7→ aix+ αi,

and
qi : [a, b] → R, x 7→ cix+ βi.

Note:
li(a) = xi−1 and li(b) = xi, i ∈ Nn.

∀ x̄ ∈ [xi−1, xi] ∃!x ∈ [a, b]: x̄ = li(x).

ψ(x̄) = cil
−1
i (x̄) + siψ(l

−1
i (x̄)) + βi

= (qi ◦ l−1
i )(x̄) + si(ψ ◦ l−1

i )(x̄), ∀ x̄ ∈ [xi−1, xi].
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Functional Equations for ψ

ψ(x) =
∑
i∈Nn

(qi ◦ l−1
i )(x)1l[xi−1,xi](x) +

∑
i∈Nn

si (ψ ◦ l−1
i )(x)1l[xi−1,xi](x),

respectively,

ψ(li(x)) = qi(x) + si ψ(x), ∀ x ∈ [a, b], i ∈ Nn.

More generally (for later),

ψ(li(x)) = qi(x) + si(x)ψ(x), ∀ x ∈ [a, b], i ∈ Nn.
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The Read–Bajraktarević (RB) Operator

Define an operator T : C[a, b] → C[a, b] by

Tf :=
∑
i∈Nn

(qi ◦ l−1
i )1l[xi−1,xi] +

n∑
i=1

si(f ◦ l−1
i )1l[xi−1,xi].

The operator T is a contraction on the Banach space (C[a, b], ∥·∥∞)
with Lipschitz constant s := max{|si| : i ∈ Nn} < 1.

The completeness of (C[a, b], ∥·∥∞) implies the existence of a unique
fixed point ψ which, by the Banach Fixed Point Theorem, can be
obtained via a sequence {fn : n ∈ N} ⊂ C[a, b] given by

fn := Tfn−1,

where f0 ∈ C[a, b] is arbitrary.
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Relation between IFS and RB Operator

H(X)
F−−−−→ H(X)xG

xG

C[a, b]
T−−−−→ C[a, b]

where G is the mapping

C[a, b] ∋ g 7→ G(g) = {(x, g(x)) : x ∈ [a, b]} ∈ H(X).
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Fractal Interpolation Problem

Given a bounded subset X of a Banach space E and a Banach space F,

construct a global function ψ : X =
n∐

i=1

Xi → F belonging to some

prescribed function space F := F (X,F) satisfying n functional
equations of the form

ψ(li(x)) = qi(x) + si(x)ψ(x), on X and for i ∈ Nn,

where the functions li partition X into disjoint subsets Xi = li(X),
qi ∈ F , and the functions si are chosen so that

si(x)ψ(x) ∈ F and si ψ ∈ F .
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Global Fractal Interpolation - Bounded Solutions

Let X be a nonempty bounded subset of E.

{li}ni=1 of injective contractions X → X generating a partition of X:

X =

n∐
i=1

li(X) =:

n∐
i=1

Xi.

Let B(X,F) := {f : X → F : f is bounded} denote the the Banach
space of bounded functions equipped with ∥f∥ := sup

x∈X
∥f(x)∥F.

Define an RB operator T : B(X,F) → FX

Tf(x) = (qi ◦ l−1
i )(x) + (si ◦ l−1

i )(x) · (f ◦ l−1
i )(x),

for x ∈ Xi and i ∈ Nn
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Existence of Bounded Solution

Theorem. The system of functional equations

ψ(li(x)) = qi(x) + si(x)ψ(x), on X and for i ∈ Nn,

has a unique bounded solution ψ : X → F provided that

(a) X =
n∐

i=1

Xi,

(b) qi ∈ B(X,F), si : X → R, and

(c) s := max
i∈Nn

sup
x∈X

|si(x)| < 1.

- Massopust, P.R. Fractal Functions, Fractal Surfaces, and Wavelets, 2nd ed., Academic Press:
San Diego, USA, 2016.
- Serpa, C.; Buescu, J. J. Constructive solutions for systems of iterative functional equations.
Constr. Approx., 2017, 45(2), 273–299.
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Example
• E := R =: F.

• X := [0, 1) ⊂ E.

• li : [0, 1) → [0, 1) with l1(x) :=
1
3x and l2(x) :=

2
3x+ 1

3 .

• Thus, X1 = [0, 13 ) and X2 = [ 13 , 1). Clearly, X =
2∐

i=1

Xi.

• q1(x) = −1 and q2(x) = x

• s1(x) =
1
2 sin(x) and s2(x) := −2

3 cos(x).

• System of functional equations:

ψ( 13x) = −1+ 1
2 sin(x)ψ(x) and ψ( 23x+

1
3 ) = x− 2

3 cos(x)ψ(x),

• Associated RB operator:

Tf(x) =

{
−1 + 1

2 sin(3x)f(3x), 0 ≤ x < 1
3 ;

3x− 1− 2
3 cos(

1
2 (3x− 1))f( 12 (3x− 1)), 1

3 ≤ x < 1,
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s = 2
3 < 1 =⇒ T is contractive.
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Figure: The solution/fixed point ψ.
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Global Fractal Interpolation - Lp solutions

X ⊂ E := Rm and Y := Rk.

ψ ∈ Lp(X,Rk) =⇒ T : Lp(X,Rk) → Lp(X,Rk)

qi ∈ Lp(X,Rk) and si ∈ L∞(X,Rk).

Theorem. The system of functional equations

ψ(li(x)) = qi(x) + si(x)ψ(x), on X ⊂ Rm and for i ∈ Nn,

has a unique solution ψ ∈ Lp(X,Rk), 1 ≤ p <∞ provided that

n∑
i=1

λis
p
i < 1,

where λi =
∥∥(l−1

i )′
∥∥
∞ and si = ∥si∥∞.

Massopust, P.R. Fractal Functions, Fractal Surfaces, and Wavelets, 2nd ed., Academic Press:
San Diego, USA, 2016.
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Global Fractal Interpolation - Continuous Solutions

Theorem. The system of functional equations

ψ(li(x)) = qi(x) + si(x)ψ(x), on X ⊂ Rm and for i ∈ Nn,

has a unique continuous solution ψ : X → F provided that

1. the functions li, qi, and si are continuous,

2. ∀ i, j ∈ Nn and ∀x1, x2 ∈ X:

lim
x→x1

fj(x) = fi(x2)

=⇒ lim
x→x1

qj(x) + sj(x)ψ(x) = qi(x2) + si(x2)ψ(x2).

- Massopust, P.R. Fractal Functions, Fractal Surfaces, and Wavelets, 2nd ed., Academic Press:
San Diego, USA, 2016.
- Serpa, C.; Buescu, J. J. Constructive solutions for systems of iterative functional equations.
Constr. Approx., 2017, 45(2), 273–299.
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Example
• X := [0, 1].

• q1(x) := x and q2(x) := 1− x.

• s1(x) =
1
2 sin(x), and s2(x) := −2

3 cos(x).

• Note that here we have X1 ∩ X2 = { 1
3} and l1(1) =

1
3 = l2(0)

• q1(1) + s1(1)ψ(1) = q2(0) + s2(0)ψ(0). The functional equations
imply for x ∈ {0, 1}

ψ(0) = q1(0) + s1(0)ψ(0) and ψ(1) = q2(1) + s2(1)ψ(0),

which gives the values of ψ at the endpoints of X:

ψ(0) =
q1(0)

1− s1(0)
and ψ(1) =

q2(1)

1− s2(1)
.

• There exists a bounded solution ψ (since s = 2
3 < 1).

• lim
x→0−

q2(x) + s2(x)ψ(x) = q1(1) + s1(1)ψ(1).
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Figure: A continuous solution/fixed point ψ.
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Local Fractal Interpolation
Let {Xi : i ∈ Nn} be a family of nonempty subsets of a fixed
nonempty bounded subset X of a normed space E.

Suppose {li}ni=1 is a collections of injective mappings from Xi → X

generating a partition of X: X =
n∐

i=1

li(Xi).

Note that the li need not be contractive mappings here.

Local fractal interpolation looks for local solutions

ψ : X =
⋃

i∈Nn

li(Xi) → F

of functional equations or for fixed points of RB operators of the form

ψ(li(x)) = qi(x) + si(x)ψ(x), x ∈ Xi, i ∈ Nn,

respectively,

Tf = (qi ◦ l−1
i ) + (si ◦ l−1

i ) · (fi ◦ l−1
i ), x ∈ li(Xi), i ∈ Nn,

where fi := f |Xi , on appropriate function spaces.
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Local Fractal Interpolation - Bounded Solutions.

• si ∈ B(Xi,R) and
• qi ∈ B(Xi,F).

Theorem. The system of functional equations

ψ(li(x)) = qi(x) + si(x)ψ(x), x ∈ Xi, i ∈ Nn,

has a unique bounded solution ψ : X → F, respectively, the RB
operator has a unique bounded fixed point ψ : X → F provided that

1. X =
n∐

i=1

Xi and

2. s := max
i∈Nn

sup
x∈Xi

|si(x)| < 1.

Massopust, P.R. Local Fractal Functions in Besov and Triebel-Lizorkin Spaces. J. Math. Anal.
Appl. 2016, 436, 393 – 407.
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Local Fractal Interpolation - Lp Solutions

• E := R =: F

• Partition of X: ∆ := (0 =: x0 < x1 < · · · < xn−1 < xn := 1).

• {Xi : i ∈ Nn} is a family of half-open intervals of [0, 1].

• Affine mappings li : Xi → [xi−1, xi) and ln : Xn → [xn−1, xn].
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Theorem. Assume that qi ∈ Lp(Xi, [0, 1]) and si ∈ L∞(Xi,R), i ∈ Nn.
The system of functional equations

ψ(li(x)) = qi(x) + si(x)ψ(x), x ∈ [0, 1], i ∈ Nn,

has a unique solution ψ ∈ Lp[0, 1], 1 ≤ p ≤ ∞
(

n∑
i=1

ai ∥si∥p∞,Xi

)1/p

, p ∈ [1,∞);

max
i∈Nn

∥si∥∞,Xi
, p = ∞,

< 1,

where ai Lipschitz constant of (l−1
i )′ and ∥si∥∞,Xi = sup

x∈Xi

|si(x)|.

Massopust, P.R. Local Fractal Functions in Besov and Triebel-Lizorkin Spaces. J. Math. Anal.
Appl. 2016, 436, 393 – 407.

26 / 53



Local Fractal Interpolation - Continuous Solutions

Theorem. The system of functional equations

ψ(li(x)) = qi(x) + si(x)ψ(x), x ∈ [0, 1], i ∈ Nn,

has a unique continuous solution ψ : X → F provided that

1. the functions li, qi, and si are continuous,

2. and ∀i, j ∈ Nn, i ̸= j, ∀x1 ∈ X, ∀x2 ∈ Xi:

lim
x→x1
x∈Xj

fj(x) = fi(x2)

=⇒ lim
x→x1
x∈Xj

qj(x) + sj(x)ψ(x) = qi(x2) + si(x2)ψ(x2).

- Massopust, P.R. Fractal Functions, Fractal Surfaces, and Wavelets, 2nd ed., Academic Press:
San Diego, USA, 2016.
- Serpa, C.; Buescu, J. J. Constructive solutions for systems of iterative functional equations.
Constr. Approx., 2017, 45(2), 273–299.
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Non-Stationary Fractal Interpolation
• X is nonempty bounded subset of a normed space E

• Doubly-indexed family of injective contractions
{lik,k : ik ∈ Nnk

, k ∈ N} from X → X generating a partition of X
for each k ∈ N.

• F Banach space

• {qik,k : ik ∈ Nnk
, k ∈ N} ⊂ B(X,F), and

{sik,k : ik ∈ Nnk
, k ∈ N} ⊂ B(X,R) are such that

s := sup
k∈N

max
ik∈Nk

∥sik,k∥∞ < 1.

• For each k ∈ N, define RB operator Tk : B(X,F) → B(X,F)

(Tkf)(lik,k(x)) := qik,k(x) + sik,k(x) · f(x), ∀x ∈ X.

• Tk is a contraction on B(X,F) with Lipschitz constant

Lip(Tk) = max
ik∈Nk

∥sik,k∥∞ ≤ s < 1.
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Invariant Set of a Sequence of Transformations

Let {Tk}k∈N be a sequence of transformations Tk : B(X,F) → B(X,F).
A subset I of B(X,F) is called an invariant set of {Tk}k∈N if

∀ k ∈ N ∀x ∈ I : Tk(x) ∈ I .

Proposition. Let {Tk}k∈N be a sequence of transformations on B(X,F).
Suppose there exists a g ∈ B(X,F) such that for all f ∈ B(X,F)

∥Tkf − g∥ ≤ µ ∥f − g∥+M,

for some µ ∈ [0, 1) and M > 0. Then the ball Br(g) of radius
r =M/(1− µ) centered at g is an invariant set for {Tk}k∈N.

- Levin, D.; Dyn, N.; Viswanathan, P. Non-stationary versions of fixed-point theory, with
applications to fractals and subdivision. J. Fixed Point Theory Appl. 2019, 21, 1–25.
- Massopust, P.R. Non-Stationary Fractal Interpolation. Mathematics 2019, 7(8), 1 – 14.
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Existence of Invariant Set

Proposition. Let {Tk}k∈N be a sequence of RB operators on
(B(X,F), ∥·∥). Suppose that the elements of {qik,k : ik ∈ Nnk

, k ∈ N}
satisfy

sup
k∈N

max
ik∈Nk

∥qik,k∥ ≤M,

for some M > 0. Then the ball Br(0) of radius r =M/(1− s)
centered at 0 ∈ B(X,F) is an invariant set for {Tk}k∈N.

Massopust, P.R. Non-Stationary Fractal Interpolation. Mathematics 2019, 7(8), 1 – 14.
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Backward and Forward Trajectories

Suppose that f ∈ B(X,F) and that {Tk}k∈N is a sequence of RB
operators on B(X,F). The sequences

Φk(f) := Tk ◦ Tk−1 ◦ · · · ◦ T1(f)

and
Ψk(f) := T1 ◦ T2 ◦ · · · ◦ Tk(f)

are called the forward, respectively, backward trajectory of f .

Levin, D.; Dyn, N.; Viswanathan, P. Non-stationary versions of fixed-point theory, with
applications to fractals and subdivision. J. Fixed Point Theory Appl. 2019, 21, 1–25.
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A Convergence Result

Theorem. Suppose {Tk}k∈N is a sequence of RB operators on B(X,F).
Further suppose that

1. there exists a nonempty closed invariant set I ⊆ B(X,F) for
{Tk}k∈N;

2. and
∞∑
k=1

k∏
j=1

Lip(Tj) <∞.

Then the backward trajectories Ψk(f0) converge for any initial f0 ∈ I
to a unique function ψ ∈ I .

- Levin, D.; Dyn, N.; Viswanathan, P. Non-stationary versions of fixed-point theory, with
applications to fractals and subdivision. J. Fixed Point Theory Appl. 2019, 21, 1–25.
- Massopust, P.R. Non-Stationary Fractal Interpolation. Mathematics 2019, 7(8), 1 – 14.
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Non-Stationary Fractal Functions

Theorem. The backwards trajectories {Ψk}k∈N converge for any initial
f0 ∈ I to a unique function ψ ∈ I , where I is the closed ball in
B(X,F) of radius M/(1− s) centered at 0.

The fixed point ψ generated by a sequence {Tk} of non-stationary RB
operators is termed a non-stationary fractal function of class B(X,Y ).

Massopust, P.R. Non-Stationary Fractal Interpolation. Mathematics 2019, 7(8), 1 – 14.
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Non-stationary Fractal Interpolation
• Let X := [0, 1] and F := R.
• For k ∈ N let {lik,k : ik ∈ Nnk

, k ∈ N} be family of injections
from [0, 1] → [0, 1] generating a partition of [0, 1].

• Assume w.l.o.g. that l1,k(0) = 0 and lnk,k(1) = 1 and define

xik−1,k := lik,k(0), xik,k := lik,k(1), ik ∈ Nnk

where x0,k := 0 and xnk,k := 1. Further assume that

0 = x0,k < · · · < xik−1,k < xik,k < · · ·xnk,k = 1.

• Let f ∈ C[0, 1] be arbitrary.

• Define a metric subspace of C[0, 1] by

C∗[0, 1] := {g ∈ C[0, 1] : g(0) = f(0) ∧ g(1) = f(1)}.

• Furthermore, let b ∈ C∗[0, 1] be the unique affine function whose
graph connects the points (0, f(0)) and (1, f(1)):

b(x) = (f(1)− f(0))x+ f(0).
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• Let {Pk}k∈N be a family of sets of points in [0, 1]× R where

Pk := {(xjk , f(xj,k) ∈ [0, 1]× R : j = 0, 1, . . . , n}.

• For k ∈ N, define an RB operator Tk : C∗[0, 1] → C∗[0, 1] by

Tkg = f +

nk∑
ik=1

sik,k ◦ l−1
ik,k

· (g − b) ◦ l−1
ik,k

χlik,k[0,1],

where {sik,k}
nk
ik=1 ⊂ C[0, 1] such that

sup
k∈N

max
ik∈Nik

∥sik,k∥∞ < 1. (∗)

• Tkg is continuous at the points xik,k ∈ [0, 1]:

Tkg(xik,k−) = Tkg(xik,k+), ∀ ik ∈ {1, . . . , n− 1}.

• Tkg ∈ C∗[0, 1] and Tkg interpolates Pk in the sense that

Tkg(xik,k) = f(xik,k), ∀ ik ∈ Nnk
.
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Continuous Non-Stationary Fractal Function

Proposition. A nonempty closed invariant set for {Tk}k∈N is given by
the closed ball in C∗[0, 1],

I =

{
g ∈ C∗[0, 1] : ∥g∥ ≤ ∥f∥+ s∥b∥

1− s

}
.

Theorem. Let {Tk}k∈N be a sequence of RB operators each of whose
elements acts on the complete metric space (C∗[0, 1], d) where
f ∈ C∗[0, 1] is arbitrary and b is given as above. Furthermore, let the
family of functions {sik,k} ⊂ C[0, 1] satisfy (∗). Then, for any f0 ∈ I ,
the backward trajectories Ψk(f0) converge to a function ψ ∈ I which
interpolates Pk.

ψ ∈ C∗[0, 1] is called a continuous non-stationary fractal function.

Massopust, P.R. Non-Stationary Fractal Interpolation. Mathematics 2019, 7(8), 1 – 14.
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Example

Consider the two RB operators Ti : C∗[0, 1] → C∗[0, 1], i = 1, 2,
defined by

(T1f)(x) =


− 1

2 f(4x), x ∈ [0, 14 ),

− 1
2 + 1

2 f(4x− 1), x ∈ [14 ,
1
2 ),

1
2 f(4x− 2), x ∈ [ 12 ,

3
4 ),

1
2 + 1

2 f(4x− 3), x ∈ [ 34 , 1],

and

(T2f)(x) :=

{
3
4f(2x), x ∈ [0, 12 ),
3
4 + 1

4f(2x− 1), x ∈ [12 , 1].

The RB operators T1 and T2 generate Kiesswetter’s fractal function
respectively, a Casino function.
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Alternating sequence {Ti}i∈N of RB operators

Tk :=

{
T1, 10(j − 1) < k ≤ 10j − 5,

T2, 10j − 5 < k ≤ 10j,
j ∈ N.
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Figure: The hybrid Kiesswetter-Casino attractor.
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Quaternionic Fractal Interpolation

Now, we extend fractal interpolation to a quaternionic setting.

As quaternions from a non-commutative division algebra over the
reals, the non-commutativity generates more intricate and complex
fractal patterns.
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A Brief Introduction to Quaternions

Let {e1, e2, e3} be the canonical basis of the Euclidean vector space
R3.

We call {e1, e2, e3} imaginary units and require that the following
multiplication rules hold:

e21 = e22 = e23 = −1,

e1e2 = e3 = −e2e1, e2e3 = e1 = −e3e2, e3e1 = e2 = −e1e3.

A real quaternion q is then an expression of the form

q = a+

3∑
i=1

viei, a, v1, v2, v3 ∈ R.
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Addition and Multiplication

Let q1 = a+
3∑

i=1

viei and q2 = b+
3∑

i=1

wiei.

Addition: q1 + q2 := (a+ b) +
3∑

i=1

(vi + wi)ei.

Multiplication:
q1q2 := (ab− v1w1 − v2w2 − v3w3) + (aw1 + bv1 + v2w3 − v3w2)e1+

(aw2 + bv2 − v1w3 + v3w1)e2 + (aw3 + bv3 + v − 1w2 − v2w1)e3.

Each quaternion q = a+
3∑

i=1

viei may be decomposed as

q = Sc(q) + Vec(q),

where Sc(q) = a is the scalar part and Vec(q) = v =
3∑

i=1

viei is the

vector part of q.
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Conjugate and Inverse

The conjugate q of the real quaternion q = a+ v is q = a− v.

Note that qq = qq = a2 + |v|2 = a2 +
3∑

i=1

v2i .

Norm on H: |q| :=
√
qq.

The inverse of a quaternion q is given by q−1 = q
|q|2 .

H := HR :=

{
a+

3∑
i=1

viei : a, v1, v2, v3 ∈ R

}
,

is a four-dimensional associative normed division algebra over R.
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Left Quaternionic Vector Spaces

A real vector space V is called a left quaternionic vector space if it is a
left H-module, i.e., if there exists a mapping H× V → V, (q, v) 7→ qv
which satisfies

1. ∀v ∈ V ∀q1, q2 ∈ H : (q1 + q2)v = q1v + q2v.

2. ∀v1, v2 ∈ V ∀q ∈ H : q(v1 + v2) = qv1 + qv2.

3. ∀v ∈ V ∀q1, q2 ∈ H : q1(q2v) = (q1q2)v.

A two-sided quaternionic vector space V is a left and right
quaternionic vector space such that λv = vλ, for all λ ∈ R and for all
v ∈ V.

Example of a two-sided quaternionic vector space is given by H.
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Quaternionic Normed Spaces

Let V be a left quaternionic vector space. A function ∥·∥ : V → R+
0 is

called a norm on V if

1. ∥v∥ = 0 iff v = 0.

2. ∥q v∥ = |q| ∥v∥, for all v ∈ V and q ∈ H.

3. ∥v + w∥ ≤ ∥v∥+ ∥w∥, for all v, w ∈ V.

A left quaternionic vector space endowed with a norm will be called a
left quaternionic normed space.

A left quaternionic normed space E is called complete if it is a
complete metric space with respect to the metric d(x, y) = ∥x− y∥
induced by the norm ∥·∥.
In this case, E is termed a left quaternionic Banach space.
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Example

The space Hk consisting of k-tuples of quaternions is both a left and a
right quaternionic vector space.

Represent elements ξ ∈ Hk as column vectors and define the
quaternionic conjugate ∗ of ξ byξ1...

ξk


∗

:=
(
ξ1 · · · ξk

)
, ξj ∈ H.

Hk endowed with the norm ∥ξ∥k :=
√
ξ∗ξ =

(
k∑

j=1

|ξj |2
)1/2

, becomes a

two-sided quaternionic Banach space as λv = vλ, ∀λ ∈ R, ∀ v ∈ Hk.

Hk becomes a topological and a complete metric space under ∥·∥k.
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Left Linear Mappings

Let V1 and V2 be left quaternionic vector spaces. A mapping
f : V1 → V2 is called left linear if

f(q v + w) = qf(v) + f(w), ∀v, w ∈ V,∀q ∈ H.

A left linear mapping is termed bounded if

∥f∥ := sup
x,y∈V1,x̸=y

∥f(x)− f(y)∥V2

∥x− y∥V1

<∞.
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Quaternionic Fractal Interpolation

E := H =: F.

Let X :=

{
q = (q0, q1, q2, q3) ∈ H : max

i=0,1,2,3
|qi| ≤ 1

}
∼= [−1, 1]4

A function f : X → H is called bounded if there exists a real number
M > 0 such that ∥f∥ ≤M .

B(X,H) := {f : X → H : f is bounded} .

B(X,H) becomes a left quaternionic vector space under

(f+g)(x) := f(x)+g(x) and (λ·f)(x) := λ·f(x), ∀x ∈ X ∀λ ∈ H.

Setting for each f ∈ B(X,H)

∥f∥ := sup
x∈X

∥f(x)∥,

then B(X,H) becomes a left Banach space.
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Divide X into n := 24 congruent four-dimensional subcubes Xi each
similar to X and such that {Xi}ni=1 forms a partition of X.

Consider the RB operator T : B(X,H) → B(X,H) given by

Tf(li(x)) := qi(x) + si(x)f(x), x ∈ X, i ∈ Nn,

where qi, si : X → H are bounded functions.

Let F := {f1, . . . , fn}. Write

fimim−1···i1 := fim ◦ fim−1
◦ fi1 ,

where each ij ∈ Nn.

For each m ∈ N:

Tmf(limim−1···i1(x)) =
m∑

k=1

k−1∏
j=1

sij (x)qk(x) +

m∏
k=1

sik(x)f(x).
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Bounded Quaternionic Fractal Function

Theorem. For the above setting, the RB operator T has a unique
fixed point ψ ∈ B(X,H), i.e.,

Tψ = ψ ⇐⇒ ψ(li(x)) = qi(x) + si(x)ψ(x), x ∈ X, i ∈ Nn,

provided that
max
i∈Nn

sup
x∈Xi

|si(x)| < 1.

The fixed point ψ is called a bounded quaternionic fractal function.

Massopust, P.R. Fractal interpolation: From global to local, to non-stationary and
quaternionic, in Frontiers of Fractal Analysis: Recent Advances and Challenges, S. Banerjee & A.
Gowrisankar (eds.), CRC Press, Boca Raton, 2022, 24 – 48.
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Example

• X := {q ∈ H : Sc q ∈ [0, 1) ∧Vec q = 0}. Note that X ∼= [0, 1) ⊂ R.

• Define injections li : X → X as follows:

l1(x) :=
1
2x and l2(x) :=

1
2 (x+ 1).

• Let q1 := e0 + 2e1 − e3 + 3e4 and q2 := −e0 − 2e1 + 2e3 + e4.

• Set q1(x) := (1− q1)x and q2(x) := q2x
2. (q1, q2 ∈ B(X,H))

• Define an RB operator T by

Tf(x) :=

{
2(1− q1)x+ s1f(2x), x ∈ [0, 12 ),

q2(2x− 1)2 + s2f(2x− 1), x ∈ [12 , 1),

• s1 := 1
10e0+

1
2e1−

1
5e2−

1
10e3 and s2 := − 1

5e0+
1
5e1−

3
5e2+

1
10e3.

• |s1| = 1
10

√
31 and |s2| = 1

10

√
45. Thus, max{s1, s2} < 1.
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Figure: The projections of ψ onto the (e0, ei)-planes.
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As ψ can be written as ψ =
3∑

i=0

ψiei, the parametric plots (ψ0, ψ1, ψ2)

and (ψ0, ψ2, ψ4) are displayed below.

Figure: Some parametric plots of the components of ψ.
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Mulţumesc Mult!
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