A Potpourri of Topics from Fractal Interpolation Theory

Peter Massopust

Center of Mathematics Technical University of Munich, Germany

Facultatea de Matematică Universitatea Transilvania din Braşov, România Sept 09, 2025

Outline

- Iterated Function Systems and the Fractal Interpolation Problem
- Global and Local Fractal Interpolation
- Non-Stationary Fractal Interpolation
- Quaternionic Fractal Interpolation

Iterated Function Systems

Let $E := (E, d_E)$ denote a Banach space.

For $n \in \mathbb{N}$, let $\mathbb{N}_n := \{1, \dots, n\}$.

For a map $f: \mathsf{E} \to \mathsf{E}$, the Lipschitz constant associated with f is

$$\operatorname{Lip}(f) := \sup_{x,y \in \mathsf{E}, x \neq y} \frac{\|f(x) - f(y)\|_{\mathsf{E}}}{\|x - y\|_{\mathsf{E}}}.$$

f is called Lipschitz if $\operatorname{Lip}(f) < +\infty$ and a contraction if $\operatorname{Lip}(f) < 1$.

Iterated function system (IFS): A collection of functions

$$\mathcal{F} := \mathcal{F}_n := \{ f_i : \mathsf{E} \to \mathsf{E} : i \in \mathbb{N}_n \}.$$

The IFS $(\mathsf{E};\mathcal{F})$ is called *contractive* if all $f \in \mathcal{F}$ are contractions.

Hyperspace of Nonempty Compact Subsets

Let E be a Banach space.

Hyperspace $\mathcal{H}(\mathsf{E})$ of Compact Subsets of E: collection of all nonempty compact subsets of E.

The Hausdorff-Pompeiu metric $d_{\mathcal{H}}$ on $\mathcal{H}(\mathsf{E})$ is defined by

$$d_{\mathcal{H}}(A,B) := \max \left\{ \max_{a \in A} \min_{b \in B} \|a - b\|, \max_{b \in B} \min_{a \in A} \|b - a\| \right\}.$$

The completeness of E implies that $(\mathcal{H}(\mathsf{E}), d_{\mathcal{H}})$ is a complete metric space.

Contraction on $(\mathcal{H}(\mathsf{E}), d_{\mathcal{H}})$

Let $\mathcal{F} := \{ f_i : \mathsf{E} \to \mathsf{E} : i \in \mathbb{N}_n \}$ be a contractive IFS.

The set-valued mapping $\mathcal{F}:\mathcal{H}(\mathsf{E})\to\mathcal{H}(\mathsf{E})$

$$\mathcal{F}(A) := \bigcup_{i=1}^{n} f_i(A).$$

is contractive with Lipschitz constant $\operatorname{Lip}(\mathcal{F}) = \max_{i \in \mathbb{N}_n} \operatorname{Lip}(f_i) < 1$.

Banach Fixed Point Theorem $\Longrightarrow \mathcal{F}$ has a unique fixed point F

$$F = \mathcal{F}(F) = \bigcup_{i=1}^{n} f_i(F) \quad \left(= \bigcup_{i_1=1}^{n} \cdots \bigcup_{i_k=1}^{n} f_{i_1} \circ \cdots \circ f_{i_k}(F) \right).$$

F is called the *attractor* or the *fractal* generated by the IFS $(E; \mathcal{F})$.

$$F = \lim_{n \to \infty} \mathcal{F}^n(A), \quad A \in \mathcal{H}(\mathsf{E}) \text{ arbitrary}$$

Fractal Interpolation Functions (Barnsely 1986)

Let $\mathsf{E} := \mathbb{R}^2$ with the Euclidean norm. Given are

- $[a, b] \subset \mathbb{R}$ with a < b;
- $X := [a, b] \times \mathbb{R} \subset \mathsf{E};$
- $Y := \{(x_{\nu}, y_{\nu}) \in X : a = x_0 < x_1 < \dots < x_{n-1} < x_n = b\};$
- $s_i \in (-1,1), i \in \mathbb{N}_n$ (free parameters);
- $A := [a, b] \times [a, b]$.

For $i \in \mathbb{N}_n$, denote by A_i the parallelogram with vertices

$$(x_{i-1}, y_{i-1}), (x_i, y_i), (x_{i-1}, y_{i-1} + s_i(b-a)), (x_i, y_i + s_i(b-a)).$$

There exists a unique affine mapping $f_i: X \to X$ with $f_i(A) = A_i$.

$$f_i \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a_i & 0 \\ c_i & s_i \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} \alpha_i \\ \beta_i \end{pmatrix}, \quad i \in \mathbb{N}_N,$$

where

$$a_{i} := \frac{x_{i} - x_{i-1}}{b - a}, \qquad c_{i} := \frac{y_{i} - y_{i-1} - s_{i} (y_{n} - y_{0})}{b - a},$$

$$\alpha_{i} := \frac{bx_{i-1} - ax_{i}}{b - a}, \qquad \beta_{i} := \frac{by_{i-1} - ay_{i} - s_{i} (by_{0} - ay_{n})}{b - a}.$$

There exists a norm - equivalent to the Euclidean norm - such that $\text{Lip}(f_i) \leq q < 1$. Thus, the IFS (X, \mathcal{F}) with $\mathcal{F} := \{f_i : i \in \mathbb{N}_n\}$ possesses a unique fixed point $G \in \mathcal{H}(X)$.

G is the graph of a continuous function $\psi : [a, b] \to \mathbb{R}$ interpolating the set $Y \colon \psi(x_{\nu}) = y_{\nu}, \ \nu \in \{0\} \cup \mathbb{N}_n$.

Barnsley, M.F. Fractal Functions and Interpolation, Constr. Approx. (1986) 2, 303-329.

Example of Construction of FIF

Let
$$n := 3$$
, $X := [0, 1] \times \mathbb{R}$.
 $Y := \{(0, 0), (\frac{1}{2}, \frac{7}{10}), (\frac{7}{10}, -\frac{1}{10}), (1, \frac{3}{10})\}$.
Let $(s_1, s_2, s_3) := (\frac{3}{5}, -\frac{1}{2}, \frac{3}{4})$.

Figure: The geometric construction of a fractal interpolation function.

As the graph of ψ is, in general, a fractal set these functions were called by Barnsley fractal interpolation functions.

Since $G = \operatorname{graph} \psi$ and satisfies a fixed point equation, one has

$$\operatorname{graph} \psi = \bigcup_{i=1}^{n} f_i(\operatorname{graph} \psi)$$

and, therefore,

$$\begin{pmatrix} \bar{x} \\ \psi(\bar{x}) \end{pmatrix} \bigg|_{\bar{x} \in [x_{i-1}, x_i]} = \begin{pmatrix} a_i & 0 \\ c_i & s_i \end{pmatrix} \begin{pmatrix} x \\ \psi(x) \end{pmatrix} \bigg|_{x \in [a, b]} + \begin{pmatrix} \alpha_i \\ \beta_i \end{pmatrix}.$$

Let

$$l_i: [a,b] \to [x_{i-1},x_i], \quad x \mapsto a_i x + \alpha_i,$$

and

$$q_i: [a,b] \to \mathbb{R}, \quad x \mapsto c_i x + \beta_i.$$

Note:

$$l_i(a) = x_{i-1}$$
 and $l_i(b) = x_i$, $i \in \mathbb{N}_n$.

$$\forall \, \bar{x} \in [x_{i-1}, x_i] \, \exists ! \, x \in [a, b] : \, \bar{x} = l_i(x).$$

$$\psi(\bar{x}) = c_i l_i^{-1}(\bar{x}) + s_i \psi(l_i^{-1}(\bar{x})) + \beta_i$$

= $(q_i \circ l_i^{-1})(\bar{x}) + s_i (\psi \circ l_i^{-1})(\bar{x}), \quad \forall \, \bar{x} \in [x_{i-1}, x_i].$

Functional Equations for ψ

$$\psi(x) = \sum_{i \in \mathbb{N}_n} (q_i \circ l_i^{-1})(x) \mathbb{1}_{[x_{i-1}, x_i]}(x) + \sum_{i \in \mathbb{N}_n} s_i (\psi \circ l_i^{-1})(x) \mathbb{1}_{[x_{i-1}, x_i]}(x),$$

respectively,

$$\psi(l_i(x)) = q_i(x) + s_i \psi(x), \quad \forall \ x \in [a, b], \ i \in \mathbb{N}_n.$$

More generally (for later),

$$\psi(l_i(x)) = q_i(x) + s_i(x) \psi(x), \quad \forall x \in [a, b], \ i \in \mathbb{N}_n.$$

The Read-Bajraktarević (RB) Operator

Define an operator $T: C[a,b] \to C[a,b]$ by

$$Tf := \sum_{i \in \mathbb{N}_n} (q_i \circ l_i^{-1}) \mathbb{1}_{[x_{i-1}, x_i]} + \sum_{i=1}^n s_i (f \circ l_i^{-1}) \mathbb{1}_{[x_{i-1}, x_i]}.$$

The operator T is a contraction on the Banach space $(C[a,b], \|\cdot\|_{\infty})$ with Lipschitz constant $s := \max\{|s_i| : i \in \mathbb{N}_n\} < 1$.

The completeness of $(C[a,b], \|\cdot\|_{\infty})$ implies the existence of a unique fixed point ψ which, by the Banach Fixed Point Theorem, can be obtained via a sequence $\{f_n : n \in \mathbb{N}\} \subset C[a,b]$ given by

$$f_n := T f_{n-1},$$

where $f_0 \in C[a, b]$ is arbitrary.

Relation between IFS and RB Operator

$$\mathcal{H}(\mathsf{X}) \xrightarrow{\mathcal{F}} \mathcal{H}(\mathsf{X})$$

$$\uparrow_{G} \qquad \uparrow_{G}$$

$$C[a,b] \xrightarrow{T} C[a,b]$$

where G is the mapping

$$C[a,b]\ni g\mapsto G(g)=\{(x,g(x)):x\in [a,b]\}\in \mathcal{H}(\mathsf{X}).$$

Fractal Interpolation Problem

Given a bounded subset X of a Banach space E and a Banach space F, construct a global function $\psi: \mathsf{X} = \coprod_{i=1}^n \mathsf{X}_i \to \mathsf{F}$ belonging to some prescribed function space $\mathscr{F} := \mathscr{F}(\mathsf{X},\mathsf{F})$ satisfying n functional equations of the form

$$\psi(l_i(x)) = q_i(x) + s_i(x)\psi(x)$$
, on X and for $i \in \mathbb{N}_n$,

where the functions l_i partition X into disjoint subsets $X_i = l_i(X)$, $q_i \in \mathcal{F}$, and the functions s_i are chosen so that

$$s_i(x)\psi(x) \in \mathsf{F}$$
 and $s_i \psi \in \mathscr{F}$.

Global Fractal Interpolation - Bounded Solutions

Let X be a nonempty bounded subset of E.

 $\{l_i\}_{i=1}^n$ of injective contractions $X \to X$ generating a partition of X:

$$X = \coprod_{i=1}^{n} l_i(X) =: \coprod_{i=1}^{n} X_i.$$

Let $\mathcal{B}(\mathsf{X},\mathsf{F}) := \{f : \mathsf{X} \to \mathsf{F} : f \text{ is bounded}\}$ denote the Banach space of bounded functions equipped with $\|f\| := \sup_{x \in \mathsf{X}} \|f(x)\|_{\mathsf{F}}$.

Define an RB operator $T: \mathcal{B}(\mathsf{X},\mathsf{F}) \to \mathsf{F}^\mathsf{X}$

$$Tf(x) = (q_i \circ l_i^{-1})(x) + (s_i \circ l_i^{-1})(x) \cdot (f \circ l_i^{-1})(x),$$

for $x \in X_i$ and $i \in \mathbb{N}_n$

Existence of Bounded Solution

Theorem. The system of functional equations

$$\psi(l_i(x)) = q_i(x) + s_i(x)\psi(x)$$
, on X and for $i \in \mathbb{N}_n$,

has a unique bounded solution $\psi: X \to F$ provided that

(a)
$$X = \coprod_{i=1}^{n} X_i$$
,

- (b) $q_i \in \mathcal{B}(X, F), s_i : X \to \mathbb{R}, and$
- (c) $s := \max_{i \in \mathbb{N}_n} \sup_{x \in \mathsf{X}} |s_i(x)| < 1.$

Massopust, P.R. Fractal Functions, Fractal Surfaces, and Wavelets, 2nd ed., Academic Press: San Diego, USA, 2016.

⁻ Serpa, C.; Buescu, J. J. Constructive solutions for systems of iterative functional equations. Constr. Approx., 2017, 45(2), 273–299.

Example

- $E := \mathbb{R} =: F$.
- $X := [0,1) \subset E$.
- $l_i: [0,1) \to [0,1)$ with $l_1(x) := \frac{1}{3}x$ and $l_2(x) := \frac{2}{3}x + \frac{1}{3}$.
- Thus, $X_1 = [0, \frac{1}{3})$ and $X_2 = [\frac{1}{3}, 1)$. Clearly, $X = \prod_{i=1}^{2} X_i$.
- $q_1(x) = -1$ and $q_2(x) = x$
- $s_1(x) = \frac{1}{2}\sin(x)$ and $s_2(x) := -\frac{2}{3}\cos(x)$.
- System of functional equations:

$$\psi(\frac{1}{3}x) = -1 + \frac{1}{2}\sin(x)\psi(x) \quad \text{and} \quad \psi(\frac{2}{3}x + \frac{1}{3}) = x - \frac{2}{3}\cos(x)\psi(x),$$

• Associated RB operator:

$$Tf(x) = \begin{cases} -1 + \frac{1}{2}\sin(3x)f(3x), & 0 \le x < \frac{1}{3}; \\ 3x - 1 - \frac{2}{3}\cos(\frac{1}{2}(3x - 1))f(\frac{1}{2}(3x - 1)), & \frac{1}{3} \le x < 1, \end{cases}$$

 $s = \frac{2}{3} < 1 \Longrightarrow T$ is contractive.

Figure: The solution/fixed point ψ .

Global Fractal Interpolation - L^p solutions

 $X \subset E := \mathbb{R}^m \text{ and } Y := \mathbb{R}^k.$

$$\psi \in L^p(\mathsf{X},\mathbb{R}^k) \quad \Longrightarrow \quad T: L^p(\mathsf{X},\mathbb{R}^k) \to L^p(\mathsf{X},\mathbb{R}^k)$$

 $q_i \in L^p(X, \mathbb{R}^k)$ and $s_i \in L^\infty(X, \mathbb{R}^k)$.

Theorem. The system of functional equations

$$\psi(l_i(x)) = q_i(x) + s_i(x)\psi(x), \quad \text{on } \mathsf{X} \subset \mathbb{R}^m \text{ and for } i \in \mathbb{N}_n,$$

has a unique solution $\psi \in L^p(X, \mathbb{R}^k)$, $1 \leq p < \infty$ provided that

$$\sum_{i=1}^{n} \lambda_i s_i^p < 1,$$

where $\lambda_i = \left\| (l_i^{-1})' \right\|_{\infty}$ and $s_i = \|s_i\|_{\infty}$.

Massopust, P.R. Fractal Functions, Fractal Surfaces, and Wavelets, 2nd ed., Academic Press: San Diego, USA, 2016.

Global Fractal Interpolation - Continuous Solutions

Theorem. The system of functional equations

$$\psi(l_i(x)) = q_i(x) + s_i(x)\psi(x), \quad \text{on } \mathsf{X} \subset \mathbb{R}^m \text{ and for } i \in \mathbb{N}_n,$$

has a unique continuous solution $\psi: X \to F$ provided that

- 1. the functions l_i , q_i , and s_i are continuous,
- 2. $\forall i, j \in \mathbb{N}_n \text{ and } \forall x_1, x_2 \in X$:

$$\lim_{x \to x_1} f_j(x) = f_i(x_2)$$

$$\implies \lim_{x \to x_1} q_j(x) + s_j(x)\psi(x) = q_i(x_2) + s_i(x_2)\psi(x_2).$$

Massopust, P.R. Fractal Functions, Fractal Surfaces, and Wavelets, 2nd ed., Academic Press: San Diego, USA, 2016.

⁻ Serpa, C.; Buescu, J. J. Constructive solutions for systems of iterative functional equations. Constr. Approx., 2017, 45(2), 273–299.

Example

- X := [0, 1].
- $q_1(x) := x$ and $q_2(x) := 1 x$.
- $s_1(x) = \frac{1}{2}\sin(x)$, and $s_2(x) := -\frac{2}{3}\cos(x)$.
- Note that here we have $X_1 \cap X_2 = \{\frac{1}{3}\}$ and $l_1(1) = \frac{1}{3} = l_2(0)$
- $q_1(1) + s_1(1)\psi(1) = q_2(0) + s_2(0)\psi(0)$. The functional equations imply for $x \in \{0, 1\}$

$$\psi(0) = q_1(0) + s_1(0)\psi(0)$$
 and $\psi(1) = q_2(1) + s_2(1)\psi(0)$,

which gives the values of ψ at the endpoints of X:

$$\psi(0) = \frac{q_1(0)}{1 - s_1(0)}$$
 and $\psi(1) = \frac{q_2(1)}{1 - s_2(1)}$.

- There exists a bounded solution ψ (since $s = \frac{2}{3} < 1$).
- $\lim_{x \to 0-} q_2(x) + s_2(x)\psi(x) = q_1(1) + s_1(1)\psi(1).$

Figure: A continuous solution/fixed point ψ .

Local Fractal Interpolation

Let $\{X_i : i \in \mathbb{N}_n\}$ be a family of nonempty subsets of a fixed nonempty bounded subset X of a normed space E.

Suppose $\{l_i\}_{i=1}^n$ is a collections of injective mappings from $X_i \to X$ generating a partition of X: $X = \coprod_{i=1}^n l_i(X_i)$.

Note that the l_i need not be contractive mappings here.

Local fractal interpolation looks for local solutions

$$\psi: \mathsf{X} = \bigcup_{i \in \mathbb{N}_n} l_i(\mathsf{X}_i) \to \mathsf{F}$$

of functional equations or for fixed points of RB operators of the form

$$\psi(l_i(x)) = q_i(x) + s_i(x)\psi(x), \quad x \in X_i, \ i \in \mathbb{N}_n,$$

respectively,

$$Tf = (q_i \circ l_i^{-1}) + (s_i \circ l_i^{-1}) \cdot (f_i \circ l_i^{-1}), \quad x \in l_i(X_i), \quad i \in \mathbb{N}_n,$$

where $f_i := f|_{X_i}$, on appropriate function spaces.

Local Fractal Interpolation - Bounded Solutions.

- $s_i \in \mathcal{B}(X_i, \mathbb{R})$ and
- $q_i \in \mathcal{B}(X_i, F)$.

Theorem. The system of functional equations

$$\psi(l_i(x)) = q_i(x) + s_i(x)\psi(x), \quad x \in X_i, \ i \in \mathbb{N}_n,$$

has a unique bounded solution $\psi : X \to F$, respectively, the RB operator has a unique bounded fixed point $\psi : X \to F$ provided that

1.
$$X = \coprod_{i=1}^{n} X_i$$
 and

2.
$$s := \max_{i \in \mathbb{N}_n} \sup_{x \in \mathsf{X}_i} |s_i(x)| < 1.$$

Massopust, P.R. Local Fractal Functions in Besov and Triebel-Lizorkin Spaces. J. Math. Anal. Appl. 2016, 436, 393 – 407.

Local Fractal Interpolation - L^p Solutions

- $E := \mathbb{R} =: F$
- Partition of X: $\Delta := (0 =: x_0 < x_1 < \dots < x_{n-1} < x_n := 1).$
- $\{X_i : i \in \mathbb{N}_n\}$ is a family of half-open intervals of [0,1].
- Affine mappings $l_i: X_i \to [x_{i-1}, x_i)$ and $l_n: X_n \to [x_{n-1}, x_n]$.

Theorem. Assume that $q_i \in L^p(X_i, [0,1])$ and $s_i \in L^\infty(X_i, \mathbb{R})$, $i \in \mathbb{N}_n$. The system of functional equations

$$\psi(l_i(x)) = q_i(x) + s_i(x)\psi(x), \quad x \in [0, 1], \ i \in \mathbb{N}_n,$$

has a unique solution $\psi \in L^p[0,1], 1 \le p \le \infty$

$$\begin{cases} \left(\sum_{i=1}^{n} a_i \|s_i\|_{\infty,\mathsf{X}_i}^p\right)^{1/p}, & p \in [1,\infty); \\ \max_{i \in \mathbb{N}_n} \|s_i\|_{\infty,\mathsf{X}_i}, & p = \infty, \end{cases} < 1,$$

where a_i Lipschitz constant of $(l_i^{-1})'$ and $||s_i||_{\infty,X_i} = \sup_{x \in X_i} |s_i(x)|$.

Massopust, P.R. Local Fractal Functions in Besov and Triebel-Lizorkin Spaces. J. Math. Anal. Appl. 2016, 436, 393 – 407.

Local Fractal Interpolation - Continuous Solutions

Theorem. The system of functional equations

$$\psi(l_i(x)) = q_i(x) + s_i(x)\psi(x), \quad x \in [0, 1], \ i \in \mathbb{N}_n,$$

has a unique continuous solution $\psi: X \to F$ provided that

- 1. the functions l_i , q_i , and s_i are continuous,
- 2. and $\forall i, j \in \mathbb{N}_n, i \neq j, \forall x_1 \in X, \forall x_2 \in X_i$:

$$\lim_{\substack{x \to x_1 \\ x \in \mathsf{X}_j}} f_j(x) = f_i(x_2)$$

$$\Longrightarrow \lim_{\substack{x \to x_1 \\ x \in \mathsf{X}_j}} q_j(x) + s_j(x)\psi(x) = q_i(x_2) + s_i(x_2)\psi(x_2).$$

⁻ Massopust, P.R. Fractal Functions, Fractal Surfaces, and Wavelets, 2nd ed., Academic Press: San Diego, USA, 2016.

⁻ Serpa, C.; Buescu, J. J. Constructive solutions for systems of iterative functional equations. Constr. Approx., 2017, 45(2), 273–299.

Non-Stationary Fractal Interpolation

- X is nonempty bounded subset of a normed space E
- Doubly-indexed family of injective contractions $\{l_{i_k,k}: i_k \in \mathbb{N}_{n_k}, k \in \mathbb{N}\}$ from $X \to X$ generating a partition of X for each $k \in \mathbb{N}$.
- F Banach space
- $\{q_{i_k,k}: i_k \in \mathbb{N}_{n_k}, k \in \mathbb{N}\} \subset \mathcal{B}(\mathsf{X},\mathsf{F}), \text{ and } \{s_{i_k,k}: i_k \in \mathbb{N}_{n_k}, k \in \mathbb{N}\} \subset \mathcal{B}(\mathsf{X},\mathbb{R}) \text{ are such that}$

$$s := \sup_{k \in \mathbb{N}} \max_{i_k \in \mathbb{N}_k} \|s_{i_k,k}\|_{\infty} < 1.$$

• For each $k \in \mathbb{N}$, define RB operator $T_k : \mathcal{B}(\mathsf{X},\mathsf{F}) \to \mathcal{B}(\mathsf{X},\mathsf{F})$

$$(T_k f)(l_{i_k,k}(x)) := q_{i_k,k}(x) + s_{i_k,k}(x) \cdot f(x), \quad \forall x \in \mathsf{X}.$$

• T_k is a contraction on $\mathcal{B}(X, F)$ with Lipschitz constant

$$\operatorname{Lip}(T_k) = \max_{i_k \in \mathbb{N}_k} \|s_{i_k,k}\|_{\infty} \le s < 1.$$

Invariant Set of a Sequence of Transformations

Let $\{T_k\}_{k\in\mathbb{N}}$ be a sequence of transformations $T_k: \mathcal{B}(\mathsf{X},\mathsf{F}) \to \mathcal{B}(\mathsf{X},\mathsf{F})$.

A subset \mathscr{I} of $\mathcal{B}(X, \mathsf{F})$ is called an invariant set of $\{T_k\}_{k \in \mathbb{N}}$ if

$$\forall k \in \mathbb{N} \ \forall x \in \mathscr{I} : T_k(x) \in \mathscr{I}.$$

Proposition. Let $\{T_k\}_{k\in\mathbb{N}}$ be a sequence of transformations on $\mathcal{B}(X, F)$. Suppose there exists a $g \in \mathcal{B}(X, F)$ such that for all $f \in \mathcal{B}(X, F)$

$$||T_k f - g|| \le \mu ||f - g|| + M,$$

for some $\mu \in [0,1)$ and M > 0. Then the ball $B_r(g)$ of radius $r = M/(1-\mu)$ centered at g is an invariant set for $\{T_k\}_{k \in \mathbb{N}}$.

⁻ Levin, D.; Dyn, N.; Viswanathan, P. Non-stationary versions of fixed-point theory, with applications to fractals and subdivision. *J. Fixed Point Theory Appl.* **2019**, *21*, 1–25.

⁻ Massopust, P.R. Non-Stationary Fractal Interpolation. Mathematics 2019, 7(8), 1 - 14.

Existence of Invariant Set

Proposition. Let $\{T_k\}_{k\in\mathbb{N}}$ be a sequence of RB operators on $(\mathcal{B}(\mathsf{X},\mathsf{F}),\|\cdot\|)$. Suppose that the elements of $\{q_{i_k,k}:i_k\in\mathbb{N}_{n_k},\,k\in\mathbb{N}\}$ satisfy

$$\sup_{k \in \mathbb{N}} \max_{i_k \in \mathbb{N}_k} \|q_{i_k,k}\| \le M,$$

for some M > 0. Then the ball $B_r(0)$ of radius r = M/(1-s) centered at $0 \in \mathcal{B}(X, \mathsf{F})$ is an invariant set for $\{T_k\}_{k \in \mathbb{N}}$.

Massopust, P.R. Non-Stationary Fractal Interpolation. Mathematics 2019, 7(8), 1 - 14.

Backward and Forward Trajectories

Suppose that $f \in \mathcal{B}(X, F)$ and that $\{T_k\}_{k \in \mathbb{N}}$ is a sequence of RB operators on $\mathcal{B}(X, F)$. The sequences

$$\Phi_k(f) := T_k \circ T_{k-1} \circ \cdots \circ T_1(f)$$

and

$$\Psi_k(f) := T_1 \circ T_2 \circ \cdots \circ T_k(f)$$

are called the *forward*, respectively, *backward trajectory* of f.

Levin, D.; Dyn, N.; Viswanathan, P. Non-stationary versions of fixed-point theory, with applications to fractals and subdivision. J. Fixed Point Theory Appl. 2019, 21, 1–25.

A Convergence Result

Theorem. Suppose $\{T_k\}_{k\in\mathbb{N}}$ is a sequence of RB operators on $\mathcal{B}(\mathsf{X},\mathsf{F})$. Further suppose that

- 1. there exists a nonempty closed invariant set $\mathscr{I} \subseteq \mathcal{B}(\mathsf{X},\mathsf{F})$ for $\{T_k\}_{k\in\mathbb{N}}$;
- 2. *and*

$$\sum_{k=1}^{\infty} \prod_{j=1}^{k} \operatorname{Lip}(T_j) < \infty.$$

Then the backward trajectories $\Psi_k(f_0)$ converge for any initial $f_0 \in \mathscr{I}$ to a unique function $\psi \in \mathscr{I}$.

⁻ Levin, D.; Dyn, N.; Viswanathan, P. Non-stationary versions of fixed-point theory, with applications to fractals and subdivision. J. Fixed Point Theory Appl. 2019, 21, 1-25.

⁻ Massopust, P.R. Non-Stationary Fractal Interpolation. Mathematics 2019, 7(8), 1 - 14.

Non-Stationary Fractal Functions

Theorem. The backwards trajectories $\{\Psi_k\}_{k\in\mathbb{N}}$ converge for any initial $f_0 \in \mathscr{I}$ to a unique function $\psi \in \mathscr{I}$, where \mathscr{I} is the closed ball in $\mathcal{B}(\mathsf{X},\mathsf{F})$ of radius M/(1-s) centered at 0.

The fixed point ψ generated by a sequence $\{T_k\}$ of non-stationary RB operators is termed a non-stationary fractal function of class $\mathcal{B}(X,Y)$.

 $Massopust,\ P.R.\ Non-Stationary\ Fractal\ Interpolation.\ \textit{Mathematics}\ \textbf{2019},\ 7(8),\ 1-14.$

Non-stationary Fractal Interpolation

- Let X := [0, 1] and $F := \mathbb{R}$.
- For $k \in \mathbb{N}$ let $\{l_{i_k,k} : i_k \in \mathbb{N}_{n_k}, k \in \mathbb{N}\}$ be family of injections from $[0,1] \to [0,1]$ generating a partition of [0,1].
- Assume w.l.o.g. that $l_{1,k}(0) = 0$ and $l_{n_k,k}(1) = 1$ and define

$$x_{i_k-1,k} := l_{i_k,k}(0), \quad x_{i_k,k} := l_{i_k,k}(1), \quad i_k \in \mathbb{N}_{n_k}$$

where $x_{0,k} := 0$ and $x_{n_k,k} := 1$. Further assume that

$$0 = x_{0,k} < \dots < x_{i_k-1,k} < x_{i_k,k} < \dots < x_{n_k,k} = 1.$$

- Let $f \in \mathcal{C}[0,1]$ be arbitrary.
- Define a metric subspace of C[0,1] by

$$\mathcal{C}_*[0,1] := \{ g \in \mathcal{C}[0,1] : g(0) = f(0) \land g(1) = f(1) \}.$$

• Furthermore, let $b \in \mathcal{C}_*[0,1]$ be the unique affine function whose graph connects the points (0, f(0)) and (1, f(1)):

$$b(x) = (f(1) - f(0))x + f(0).$$

• Let $\{\mathcal{P}_k\}_{k\in\mathbb{N}}$ be a family of sets of points in $[0,1]\times\mathbb{R}$ where

$$\mathcal{P}_k := \{(x_{j_k}, f(x_{j,k}) \in [0,1] \times \mathbb{R} : j = 0,1,\ldots,n\}.$$

• For $k \in \mathbb{N}$, define an RB operator $T_k : \mathcal{C}_*[0,1] \to \mathcal{C}_*[0,1]$ by

$$T_k g = f + \sum_{i_k=1}^{n_k} s_{i_k,k} \circ l_{i_k,k}^{-1} \cdot (g-b) \circ l_{i_k,k}^{-1} \chi_{l_{i_k,k}[0,1]},$$

where $\{s_{i_k,k}\}_{i_k=1}^{n_k} \subset \mathcal{C}[0,1]$ such that

$$\sup_{k \in \mathbb{N}} \max_{i_k \in \mathbb{N}_{i_k}} \|s_{i_k,k}\|_{\infty} < 1.$$
 (*)

• $T_k g$ is continuous at the points $x_{i_k,k} \in [0,1]$:

$$T_k g(x_{i_k,k}-) = T_k g(x_{i_k,k}+), \quad \forall i_k \in \{1,\dots,n-1\}.$$

• $T_k g \in \mathcal{C}_*[0,1]$ and $T_k g$ interpolates \mathcal{P}_k in the sense that

$$T_k g(x_{i_k,k}) = f(x_{i_k,k}), \quad \forall i_k \in \mathbb{N}_{n_k}.$$

Continuous Non-Stationary Fractal Function

Proposition. A nonempty closed invariant set for $\{T_k\}_{k\in\mathbb{N}}$ is given by the closed ball in $C_*[0,1]$,

$$\mathscr{I} = \left\{ g \in \mathcal{C}_*[0,1] : ||g|| \le \frac{||f|| + s||b||}{1 - s} \right\}.$$

Theorem. Let $\{T_k\}_{k\in\mathbb{N}}$ be a sequence of RB operators each of whose elements acts on the complete metric space $(\mathcal{C}_*[0,1],d)$ where $f \in \mathcal{C}_*[0,1]$ is arbitrary and b is given as above. Furthermore, let the family of functions $\{s_{i_k,k}\} \subset \mathcal{C}[0,1]$ satisfy (*). Then, for any $f_0 \in \mathscr{I}$, the backward trajectories $\Psi_k(f_0)$ converge to a function $\psi \in \mathscr{I}$ which interpolates \mathcal{P}_k .

 $\psi \in \mathcal{C}_*[0,1]$ is called a continuous non-stationary fractal function.

Massopust, P.R. Non-Stationary Fractal Interpolation. Mathematics 2019, 7(8), 1 - 14.

Example

Consider the two RB operators $T_i: C_*[0,1] \to C_*[0,1], i = 1,2,$ defined by

$$(T_1 f)(x) = \begin{cases} -\frac{1}{2} f(4x), & x \in [0, \frac{1}{4}), \\ -\frac{1}{2} + \frac{1}{2} f(4x - 1), & x \in [\frac{1}{4}, \frac{1}{2}), \\ \frac{1}{2} f(4x - 2), & x \in [\frac{1}{2}, \frac{3}{4}), \\ \frac{1}{2} + \frac{1}{2} f(4x - 3), & x \in [\frac{3}{4}, 1], \end{cases}$$

and

$$(T_2 f)(x) := \begin{cases} \frac{3}{4} f(2x), & x \in [0, \frac{1}{2}), \\ \frac{3}{4} + \frac{1}{4} f(2x - 1), & x \in [\frac{1}{2}, 1]. \end{cases}$$

The RB operators T_1 and T_2 generate Kiesswetter's fractal function respectively, a Casino function.

Alternating sequence $\{T_i\}_{i\in\mathbb{N}}$ of RB operators

$$T_k := \begin{cases} T_1, & 10(j-1) < k \le 10j - 5, \\ T_2, & 10j - 5 < k \le 10j, \end{cases} \quad j \in \mathbb{N}.$$

Figure: The hybrid Kiesswetter-Casino attractor.

Quaternionic Fractal Interpolation

Now, we extend fractal interpolation to a quaternionic setting.

As quaternions from a non-commutative division algebra over the reals, the non-commutativity generates more intricate and complex fractal patterns.

A Brief Introduction to Quaternions

Let $\{e_1, e_2, e_3\}$ be the canonical basis of the Euclidean vector space \mathbb{R}^3 .

We call $\{e_1, e_2, e_3\}$ imaginary units and require that the following multiplication rules hold:

$$e_1^2 = e_2^2 = e_3^2 = -1,$$

 $e_1e_2 = e_3 = -e_2e_1, \quad e_2e_3 = e_1 = -e_3e_2, \quad e_3e_1 = e_2 = -e_1e_3.$

A real quaternion q is then an expression of the form

$$q = a + \sum_{i=1}^{3} v_i e_i, \quad a, v_1, v_2, v_3 \in \mathbb{R}.$$

Addition and Multiplication

Let
$$q_1 = a + \sum_{i=1}^{3} v_i e_i$$
 and $q_2 = b + \sum_{i=1}^{3} w_i e_i$.

Addition:
$$q_1 + q_2 := (a + b) + \sum_{i=1}^{3} (v_i + w_i)e_i$$
.

Multiplication:

$$q_1q_2 := (ab - v_1w_1 - v_2w_2 - v_3w_3) + (aw_1 + bv_1 + v_2w_3 - v_3w_2)e_1 + (aw_2 + bv_2 - v_1w_3 + v_3w_1)e_2 + (aw_3 + bv_3 + v - 1w_2 - v_2w_1)e_3.$$

Each quaternion $q = a + \sum_{i=1}^{3} v_i e_i$ may be decomposed as

$$q = Sc(q) + Vec(q),$$

where Sc(q) = a is the scalar part and $Vec(q) = v = \sum_{i=1}^{3} v_i e_i$ is the vector part of q.

Conjugate and Inverse

The *conjugate* \overline{q} of the real quaternion q = a + v is $\overline{q} = a - v$.

Note that
$$q\bar{q} = \bar{q}q = a^2 + |v|^2 = a^2 + \sum_{i=1}^{3} v_i^2$$
.

Norm on \mathbb{H} : $|q| := \sqrt{q\overline{q}}$.

The inverse of a quaternion q is given by $q^{-1} = \frac{\overline{q}}{|q|^2}$.

$$\mathbb{H} := \mathbb{H}_{\mathbb{R}} := \left\{ a + \sum_{i=1}^{3} v_i e_i : a, v_1, v_2, v_3 \in \mathbb{R} \right\},\,$$

is a four-dimensional associative normed division algebra over \mathbb{R} .

Left Quaternionic Vector Spaces

A real vector space V is called a *left quaternionic vector space* if it is a left \mathbb{H} -module, i.e., if there exists a mapping $\mathbb{H} \times \mathsf{V} \to \mathsf{V}$, $(q,v) \mapsto qv$ which satisfies

- 1. $\forall v \in V \forall q_1, q_2 \in \mathbb{H} : (q_1 + q_2)v = q_1v + q_2v.$
- 2. $\forall v_1, v_2 \in V \forall q \in \mathbb{H} : q(v_1 + v_2) = qv_1 + qv_2.$
- 3. $\forall v \in V \, \forall q_1, q_2 \in \mathbb{H} : q_1(q_2v) = (q_1q_2)v.$

A two-sided quaternionic vector space V is a left and right quaternionic vector space such that $\lambda v = v\lambda$, for all $\lambda \in \mathbb{R}$ and for all $v \in V$.

Example of a two-sided quaternionic vector space is given by H.

Quaternionic Normed Spaces

Let V be a left quaternionic vector space. A function $\|\cdot\|: V \to \mathbb{R}_0^+$ is called a *norm* on V if

- 1. ||v|| = 0 iff v = 0.
- 2. ||qv|| = |q| ||v||, for all $v \in V$ and $q \in H$.
- 3. $||v + w|| \le ||v|| + ||w||$, for all $v, w \in V$.

A left quaternionic vector space endowed with a norm will be called a *left quaternionic normed space*.

A left quaternionic normed space E is called *complete* if it is a complete metric space with respect to the metric $d(x,y) = \|x-y\|$ induced by the norm $\|\cdot\|$.

In this case, E is termed a left quaternionic Banach space.

Example

The space \mathbb{H}^k consisting of k-tuples of quaternions is both a left and a right quaternionic vector space.

Represent elements $\xi \in \mathbb{H}^k$ as column vectors and define the quaternionic conjugate * of ξ by

$$\begin{pmatrix} \xi_1 \\ \vdots \\ \xi_k \end{pmatrix}^* := \begin{pmatrix} \overline{\xi_1} & \cdots & \overline{\xi_k} \end{pmatrix}, \qquad \xi_j \in \mathbb{H}.$$

 \mathbb{H}^k endowed with the norm $\|\xi\|_k := \sqrt{\xi^* \xi} = \left(\sum_{j=1}^k |\xi_j|^2\right)^{1/2}$, becomes a two-sided quaternionic Banach space as $\lambda v = v\lambda$, $\forall \lambda \in \mathbb{R}$, $\forall v \in \mathbb{H}^k$. \mathbb{H}^k becomes a topological and a complete metric space under $\|\cdot\|_k$.

Left Linear Mappings

Let V_1 and V_2 be left quaternionic vector spaces. A mapping $f: V_1 \to V_2$ is called *left linear* if

$$f(q\,v+w)=qf(v)+f(w),\quad \forall v,w\in \mathsf{V}, \forall q\in \mathbb{H}.$$

A left linear mapping is termed bounded if

$$||f|| := \sup_{x,y \in V_1, x \neq y} \frac{||f(x) - f(y)||_{V_2}}{||x - y||_{V_1}} < \infty.$$

Quaternionic Fractal Interpolation

 $\mathsf{E} := \mathbb{H} =: \mathsf{F}.$

Let
$$X := \left\{ q = (q_0, q_1, q_2, q_3) \in \mathbb{H} : \max_{i=0,1,2,3} |q_i| \le 1 \right\} \cong [-1, 1]^4$$

A function $f: X \to \mathbb{H}$ is called *bounded* if there exists a real number M > 0 such that $||f|| \le M$.

$$\mathcal{B}(\mathsf{X}, \mathbb{H}) := \{ f : \mathsf{X} \to \mathbb{H} : f \text{ is bounded} \}.$$

 $\mathcal{B}(X,\mathbb{H})$ becomes a left quaternionic vector space under

$$(f+g)(x) := f(x) + g(x) \quad \text{and} \quad (\lambda \cdot f)(x) := \lambda \cdot f(x), \quad \forall \, x \in \mathsf{X} \, \, \forall \, \lambda \in \mathbb{H}.$$

Setting for each $f \in \mathcal{B}(X, \mathbb{H})$

$$||f|| := \sup_{x \in \mathsf{X}} ||f(x)||,$$

then $\mathcal{B}(X, \mathbb{H})$ becomes a left Banach space.

Divide X into $n := 2^4$ congruent four-dimensional subcubes X_i each similar to X and such that $\{X_i\}_{i=1}^n$ forms a partition of X.

Consider the RB operator $T: \mathcal{B}(X, \mathbb{H}) \to \mathcal{B}(X, \mathbb{H})$ given by

$$Tf(l_i(x)) := q_i(x) + s_i(x)f(x), \quad x \in X, \ i \in \mathbb{N}_n,$$

where $q_i, s_i : X \to \mathbb{H}$ are bounded functions.

Let $\mathcal{F} := \{f_1, \ldots, f_n\}$. Write

$$f_{i_m i_{m-1} \cdots i_1} := f_{i_m} \circ f_{i_{m-1}} \circ f_{i_1},$$

where each $i_j \in \mathbb{N}_n$.

For each $m \in \mathbb{N}$:

$$T^{m}f(l_{i_{m}i_{m-1}\cdots i_{1}}(x)) = \sum_{k=1}^{m} \prod_{j=1}^{k-1} s_{i_{j}}(x)q_{k}(x) + \prod_{k=1}^{m} s_{i_{k}}(x)f(x).$$

Bounded Quaternionic Fractal Function

Theorem. For the above setting, the RB operator T has a unique fixed point $\psi \in \mathcal{B}(X, \mathbb{H})$, i.e.,

$$T\psi = \psi \iff \psi(l_i(x)) = q_i(x) + s_i(x)\psi(x), \quad x \in X, \ i \in \mathbb{N}_n,$$

provided that

$$\max_{i \in \mathbb{N}_n} \sup_{x \in \mathsf{X}_i} |s_i(x)| < 1.$$

The fixed point ψ is called a bounded quaternionic fractal function.

Massopust, P.R. Fractal interpolation: From global to local, to non-stationary and quaternionic, in *Frontiers of Fractal Analysis: Recent Advances and Challenges*, S. Banerjee & A. Gowrisankar (eds.), CRC Press, Boca Raton, 2022, 24 – 48.

Example

- $X := \{q \in \mathbb{H} : \operatorname{Sc} q \in [0,1) \wedge \operatorname{Vec} q = 0\}$. Note that $X \cong [0,1) \subset \mathbb{R}$.
- Define injections $l_i: X \to X$ as follows:

$$l_1(x) := \frac{1}{2}x$$
 and $l_2(x) := \frac{1}{2}(x+1)$.

- Let $q_1 := e_0 + 2e_1 e_3 + 3e_4$ and $q_2 := -e_0 2e_1 + 2e_3 + e_4$.
- Set $q_1(x) := (1 q_1)x$ and $q_2(x) := q_2x^2$. $(q_1, q_2 \in \mathcal{B}(X, \mathbb{H}))$
- Define an RB operator T by

$$Tf(x) := \begin{cases} 2(1 - q_1)x + s_1 f(2x), & x \in [0, \frac{1}{2}), \\ q_2(2x - 1)^2 + s_2 f(2x - 1), & x \in [\frac{1}{2}, 1), \end{cases}$$

- $s_1 := \frac{1}{10}e_0 + \frac{1}{2}e_1 \frac{1}{5}e_2 \frac{1}{10}e_3$ and $s_2 := -\frac{1}{5}e_0 + \frac{1}{5}e_1 \frac{3}{5}e_2 + \frac{1}{10}e_3$.
- $|s_1| = \frac{1}{10}\sqrt{31}$ and $|s_2| = \frac{1}{10}\sqrt{45}$. Thus, $\max\{s_1, s_2\} < 1$.

Figure: The projections of ψ onto the (e_0, e_i) -planes.

As ψ can be written as $\psi = \sum_{i=0}^{3} \psi_i e_i$, the parametric plots (ψ_0, ψ_1, ψ_2) and (ψ_0, ψ_2, ψ_4) are displayed below.

Figure: Some parametric plots of the components of ψ .

Multumesc Mult!