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Iterated Function Systems

Let E := (E, dg) denote a Banach space.
Forn € N, let N,, :={1,...,n}.

For a map f : E — E, the Lipschitz constant associated with f is

Llp(f) = sup M .

z,y€E,x7#y ||$ - ?J”E

f is called Lipschitz if Lip(f) < 400 and a contraction if Lip(f) < 1.
Tterated function system (IFS): A collection of functions

F=F,={fi:E>E:ieN,}

The IFS (E; F) is called contractive if all f € F are contractions.
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Hyperspace of Nonempty Compact Subsets

Let E be a Banach space.

Hyperspace H(E) of Compact Subsets of E: collection of all nonempty
compact subsets of E.

The Hausdorff-Pompeiu metric dz; on H(E) is defined by

dy (A, B) := max {max min |la — b||, max min ||b — a||} .
acA beB beB acA

The completeness of E implies that (H(E), dy) is a complete metric
space.
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Contraction on (H(E), dy)

Let F:={f; : E— E:i € N,} be a contractive IFS.
The set-valued mapping F : H(E) — H(E)

is contractive with Lipschitz constant Lip(F) = max Lip(f;) <
ASIAPY

Banach Fixed Point Theorem = F has a unique fixed point F’
n
= J ( U U fir oo fi >> :
i=1 ’Ll 1 lk 1

F is called the attractor or the fractal generated by the IFS (E; F).
F = lim F*(A), A€ H(E) arbitrary

n—oo
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Fractal Interpolation Functions (Barnsely 1986)

Let E := R? with the Euclidean norm. Given are
® [a,b] C R with a < b;
e X:=la,b] xR CE;
o Vi={(zy,yp) EXta=a0< 21 < < Tp_1 <xp =0}
® 5, €(—1,1), i € N, (free parameters);
® A:=]a,b] x [a,b].
For i € N,,, denote by A; the parallelogram with vertices
(im1,%i-1), (@i, 9i), (wim1,5i-1 + si(b—a)), (5, yi + 5:(b—a)).

There exists a unique affine mapping f; : X — X with f;(A) = A;.
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There exists a norm - equivalent to the Euclidean norm - such that
Lip(f;) < ¢ < 1. Thus, the IFS (X, F) with F := {f; : i € N,,}

possesses a unique fixed point G € H(X).

G is the graph of a continuous function ¢ : [a,b] — R interpolating

the set Y: ¢(z,) =y, v € {0} UN,,.

Barnsley, M.F. Fractal Functions and Interpolation, Constr. Approx. (1986) 2, 303-329.
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Example of Construction of FIF

Let n:=3, X:=[0,1] xR
Y= {(an)v(% lo) (T7o %) (1, 130)}-

1
Let (s1,82,53) 1= (g % %)

Figure: The geometric construction of a fractal interpolation function.
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As the graph of 9 is, in general, a fractal set these functions were
called by Barnsley fractal interpolation functions.

Since G = graph ) and satisfies a fixed point equation, one has

graph¢) = | J fi(graph1))

i=1

and, therefore,

(v60)

T€[xi—1,m4]
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Let
Lt [a,b) = [xi—1, 2], x— az+ oy,

and
¢ : [a,0) = R, == cz+ 5.

Note: .
l,-(a) =x;_1 and lz(b) =ux;, 1€N,.

VI € [x;—1,2;) o € [a,b]: T =1;(z).

D(@) = eili (@) + s (17 (7)) + By
= (g o7 ) (@) +si(oly )(@), V€ [wi,xil.
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Functional Equations for v

d(@) =Y (giol;y @), og@) + Y si (ol ) @), 0(@),

ieN, ieN,
respectively,
V(li(2)) = ¢i(x) + sip(x), YV €lab], i €N,.
More generally (for later),

P(li(x)) = gi(z) + si(x)Y(x), Vaz€lab], i €N,.
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The Read—Bajraktarevi¢ (RB) Operator
Define an operator T : Cla, b] — C|a,b] by
Tf = Z (Q1 © li_l)]l[xi,l,wi] + Z Sl(f © li_l)]l[xi,l,wi]'

€Ny, =1

The operator T is a contraction on the Banach space (Cl[a,b], ||-[|,.)
with Lipschitz constant s := max{|s;| : i € N, } < 1.

The completeness of (Cla,b], ||-|| ) implies the existence of a unique
fixed point ¥ which, by the Banach Fixed Point Theorem, can be
obtained via a sequence {f, : n € N} C CJa, b] given by

fn = Tfn—la

where fo € C[a,b] is arbitrary.
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Relation between IFS and RB Operator

HX) —L— H(X)

[e [e

Cla,b] —— Cla, b]

where G is the mapping

Cla,b] 5 g = G(g) ={(z,9(x)) : z € [a,b]} € H(X).
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Fractal Interpolation Problem

Given a bounded subset X of a Banach space E and a Banach space F,
n
construct a global function ¢ : X = [] X; — F belonging to some
i=1
prescribed function space .% := .Z (X, F) satisfying n functional
equations of the form

V() = ¢i(z) + si(x)Y(z), on X and for i € N,

where the functions [; partition X into disjoint subsets X; = [;(X),
¢; € &, and the functions s; are chosen so that

si(z)Y(x) € F and s;¢ € Z.
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Global Fractal Interpolation - Bounded Solutions

Let X be a nonempty bounded subset of E.

{l;}_, of injective contractions X — X generating a partition of X:

Let B(X,F):={f : X —= F: f is bounded} denote the the Banach
space of bounded functions equipped with || f|| := sup || f(z)||¢-
reX

Define an RB operator T : B(X,F) — FX
Tf(x) = (a0l (@) + (s 017 ) (@) - (F 017 (@),

for x € X; and 71 € N,
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Existence of Bounded Solution

Theorem. The system of functional equations

P(li(x)) = ¢;(x) + si(x)Y(x), on X and for i € Ny,
has a unique bounded solution 1 : X — F provided that

(a) X = .];[1 X;,

(b) ¢ € BX,F), s, : X =R, and

(c) s:=maxsup|s;(z)] < 1.
€N, zeX

- Massopust, P.R. Fractal Functions, Fractal Surfaces, and Wavelets, 2nd ed., Academic Press:
San Diego, USA, 2016.

- Serpa, C.; Buescu, J. J. Constructive solutions for systems of iterative functional equations.
Constr. Approz., 2017, 45(2), 273-299.
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Example

l; :10,1) = [0,1) with {1 (z) :%m and Iy (z )—% +§.
Thus, X; = [0, %) and Xy = [%, 1). Clearly, X = ]_[ X;.
i=1

@ (z) = -1 and g2(z) =

s1(z) = 1 sin(z) and s3(x) := —2 cos(z).

System of functional equations:

w(éx) =1+ % sin(z)y(z) and w( ) =x—3 2 cos(x)y(x),

Associated RB operator:

1+ 1sin(3z)f(3z),
o= {Sx 2 5 cos(3(3z — 1)) f(3(3z — 1)),

—_ W=

W= O
IA IA
A N
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s = % < 1 =T is contractive.

0.5+

-0.5-

-1.0

0.2 04 Lob ™ 08 1.0

Wi

Figure: The solution/fixed point .
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Global Fractal Interpolation - L? solutions

XCE:=R™andY :=R"
e LP(X,RF) = T:LP(X,RF) — LP(X,RF)
¢ € LP(X,RF) and s; € L (X, RF).
Theorem. The system of functional equations
V(i (2)) = qi(x) + si(x)Y(x), on X CR™ and fori €N,

has a unique solution v € LP(X,R¥), 1 < p < co provided that

n
Z )\Zsf <1,
=1

where X; = ||(I;71)'|| . and s; = ||si| -

oo

Massopust, P.R. Fractal Functions, Fractal Surfaces, and Wavelets, 2nd ed., Academic Press:
San Diego, USA, 2016.
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Global Fractal Interpolation - Continuous Solutions

Theorem. The system of functional equations

$(li(2) = (@) + si@yp(@), on X C R™ and for i € N,,

has a unique continuous solution ¥ : X — F provided that
1. the functions l;, q;, and s; are continuous,

2. Vi,j €N, and Vxi,x0 € X:

rT—T1

= xli)nwll q;(x) + s5(x)p(x) = qi(w2) + si(22)(22).

- Massopust, P.R. Fractal Functions, Fractal Surfaces, and Wavelets, 2nd ed., Academic Press:
San Diego, USA, 2016.

- Serpa, C.; Buescu, J. J. Constructive solutions for systems of iterative functional equations.
Constr. Approz., 2017, 45(2), 273-299.
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Example

X:=10,1].

q1(z) ==z and qa(z) ;=1 — z.

s1(z) = 1 sin(z), and sy(z) := —2 cos(x).

Note that here we have X1 N Xy = {3} and l1(1) = § = 12(0)

q1(1) + 51 (1)(1) = ¢2(0) 4 $2(0)(0). The functional equations
imply for z € {0,1}

¥(0) = q1(0) + 51(0)1(0) and (1) = g2(1) + 52(1)1(0),
which gives the values of ¥ at the endpoints of X:

0. (0) 22(1)
0(0) = P20 and w1 = 2
There exists a bounded solution 1 (since s = 2 < 1).

dim ga(2) + s2(2) (@) = (1) + s1(1)(1).
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Figure: A continuous solution/fixed point ).
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Local Fractal Interpolation

Let {X; : ¢ € N,,} be a family of nonempty subsets of a fixed
nonempty bounded subset X of a normed space E.

Suppose {l;}7 is a collections of injective mappings from X; — X

n
generating a partition of X: X = [ 1;(X;).
i=1

Note that the I; need not be contractive mappings here.
Local fractal interpolation looks for local solutions
Y:X=|J LX) —F
ieN,
of functional equations or for fixed points of RB operators of the form
Y(li(2)) = qi(z) + si(x)(z), x€X;, i €Ny,
respectively,
Tf=(goly )+ (sioli ) (fiolih), z€li(X), i€Ny,

where f; :== f|x,, on appropriate function spaces.
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Local Fractal Interpolation - Bounded Solutions.

® 35, € B(X“R) and
® q;, € B(Xl, F)

Theorem. The system of functional equations
Y(li(2) = qi(z) + si(2)Y(x), x€X;, i €Ny,

has a unique bounded solution ¢ : X — F, respectively, the RB
operator has a unique bounded fized point 1 : X — F provided that

1. X=]IX; and
i=1

2. §:=maxs ; < 1.
s grelezgzlsz(w)l

Massopust, P.R. Local Fractal Functions in Besov and Triebel-Lizorkin Spaces. J. Math. Anal.
Appl. 2016, 436, 393 — 407.
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Local Fractal Interpolation - LP Solutions

E:=R=F
Partition of X: A := (0 =129 <71 < -+ < Tp_1 < 7, = 1).
{X; :i€N,} is a family of half-open intervals of [0, 1].

Affine mappings l; : X; = [z;_1,2;) and 1, : X, = [2y—1, 2y).
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Theorem. Assume that q; € LP(X;,[0,1]) and s; € L*°(X;,R), i € N,,.

The system of functional equations
Y(li(x)) = ¢i(x) + si(z)(x), x€][0,1], i € Ny,

has a unique solution ¢ € LP[0,1], 1 <p < o0

n 1/p
(Zailsilzo,xi) , pell,oo);
=1

mngsiHOO,Xm p =00,

1&Nn

<1,

where a; Lipschitz constant of (I;7')" and ||si]|cex; = sup |s;(z)|
x€EX;

Massopust, P.R. Local Fractal Functions in Besov and Triebel-Lizorkin Spaces. J. Math. Anal.

Appl. 2016, 436, 393 — 407.
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Local Fractal Interpolation - Continuous Solutions

Theorem. The system of functional equations

has a unique continuous solution i : X — F provided that
1. the functions l;, q;, and s; are continuous,

2. and Vi, j € Ny, i # j, Va1 € X, Vs € X;:

Jim f(2) = filz2)

TEX;

= xlggl q; () + s (x)(x) = qi(x2) + si(w2)Y(z2).
zEX;

- Massopust, P.R. Fractal Functions, Fractal Surfaces, and Wavelets, 2nd ed., Academic Press:
San Diego, USA, 2016.

- Serpa, C.; Buescu, J. J. Constructive solutions for systems of iterative functional equations.
Constr. Approz., 2017, 45(2), 273-299.
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Non-Stationary Fractal Interpolation

X is nonempty bounded subset of a normed space E

Doubly-indexed family of injective contractions
{li,.k ik € Ny, k € N} from X — X generating a partition of X
for each k£ € N.

F Banach space

{Qi.ke ik € Ny, k € N} € B(X,F), and
{Sip.k 21k € Ny, , k € N} C B(X,R) are such that

S := sup max ||s; < 1.
sup maps |l il

For each k € N, define RB operator T}, : B(X,F) — B(X,F)
(T )i k(@) = Gir k() + iy k(@) - f(), VoeX
T} is a contraction on B(X,F) with Lipschitz constant

Lip(Ty) = max IIsi klloo < s < 1.
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Invariant Set of a Sequence of Transformations

Let {T} }ren be a sequence of transformations Ty, : B(X,F) — B(X,F).

A subset .# of B(X,F) is called an invariant set of {7} }ren if

VkeNVze e S : Ty(x) € 7.

Proposition. Let {Ty }ren be a sequence of transformations on B(X,F).

Suppose there exists a g € B(X,F) such that for all f € B(X,F)

T f —gll < pllf =gl + M,

for some p € [0,1) and M > 0. Then the ball B,(g) of radius
r=M/(1—p) centered at g is an invariant set for {Ty}ren-

- Levin, D.; Dyn, N.; Viswanathan, P. Non-stationary versions of fixed-point theory, with
applications to fractals and subdivision. J. Fized Point Theory Appl. 2019, 21, 1-25.
- Massopust, P.R. Non-Stationary Fractal Interpolation. Mathematics 2019, 7(8), 1 — 14.
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Existence of Invariant Set

Proposition. Let {Tx}ren be a sequence of RB operators on
(BOX,F), |IN)- Suppose that the elements of {qi, i : ik € Ny, , k € N}

satisfy

sup max lgip k|l < M,
kEN ik

for some M > 0. Then the ball B,-(0) of radius r = M/(1 — s)
centered at 0 € B(X,F) is an invariant set for {Ty}ren-

Massopust, P.R. Non-Stationary Fractal Interpolation. Mathematics 2019, 7(8), 1 — 14.
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Backward and Forward Trajectories

Suppose that f € B(X,F) and that {7 }ren is a sequence of RB
operators on B(X, F). The sequences

Qi(f) =Tk oTg—10---oT1(f)

and
Up(f):=T1oTy0---0Tk(f)

are called the forward, respectively, backward trajectory of f.

Levin, D.; Dyn, N.; Viswanathan, P. Non-stationary versions of fixed-point theory, with
applications to fractals and subdivision. J. Fized Point Theory Appl. 2019, 21, 1-25.
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A Convergence Result

Theorem. Suppose {Ty}tren is a sequence of RB operators on B(X,F).
Further suppose that
1. there exists a nonempty closed invariant set . C B(X,F) for
{Tk}ken;
2. and

o k
Z H Lip(7}) < oo.

k=1j=1

Then the backward trajectories Wi (fo) converge for any initial fo € &
to a unique function ¢ € S.

- Levin, D.; Dyn, N.; Viswanathan, P. Non-stationary versions of fixed-point theory, with
applications to fractals and subdivision. J. Fized Point Theory Appl. 2019, 21, 1-25.
- Massopust, P.R. Non-Stationary Fractal Interpolation. Mathematics 2019, 7(8), 1 — 14.
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Non-Stationary Fractal Functions

Theorem. The backwards trajectories {Uy}ren converge for any initial
fo € F to a unique function ¢ € F, where & is the closed ball in
B(X,F) of radius M /(1 — s) centered at 0.

The fixed point 1) generated by a sequence {7} of non-stationary RB
operators is termed a non-stationary fractal function of class B(X,Y).

Massopust, P.R. Non-Stationary Fractal Interpolation. Mathematics 2019, 7(8), 1 — 14.
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Non-stationary Fractal Interpolation
Let X :=[0,1] and F :=R.

For k € N let {l;, x : ix € Ny, k € N} be family of injections
from [0, 1] — [0, 1] generating a partition of [0, 1].

Assume w.l.o.g. that 1 5(0) =0 and I, x(1) = 1 and define
Tig—1,k =l k(0), ik =l k(1), ik € Ny,
where zg ;, := 0 and zy, , := 1. Further assume that
O=zop < <Tj -1k < Tip g < Ty k = 1.
Let f € C[0,1] be arbitrary.
Define a metric subspace of C[0, 1] by
C.[0,1] :={g € C[0,1] : g(0) = f(0) A g(1) = f(1)}.

Furthermore, let b € C.[0,1] be the unique affine function whose
graph connects the points (0, f(0)) and (1, f(1)):

b(z) = (f(1) = f(0))z + £(0).
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® Let {Pk}ren be a family of sets of points in [0, 1] x R where
Pr :=A{(zj,, f(z;r) €[0,1]] xR:5=0,1,...,n}.
® For k € N, define an RB operator T}, : C.[0, 1] — C.[0, 1] by

N
Tyg=f+ Z Sig,k © lz_k:,lk ’ (g - b) © lz_kllc Xy, 1[0,1]5

=1

where {s;, r}:"_, C C[0,1] such that

Z;,A,Il

sup max |8, klleo < 1. (%)
keN ik €Ny,

® Tg is continuous at the points z;, j € [0,1]:
Teg(i, b—) = Thg(xip x+), Vige{l,...,n—1}
® Tig € C.[0,1] and Tjg interpolates Py in the sense that
Teg(@iy k) = [(i k), YVik € Ny,
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Continuous Non-Stationary Fractal Function

Proposition. A nonempty closed invariant set for {Tj; }ren is given by
the closed ball in C.[0,1],

fll+s]|b

s ={seccoa:pg) < L

Theorem. Let {T}}ren be a sequence of RB operators each of whose
elements acts on the complete metric space (Ci[0,1],d) where

f € C.[0,1] is arbitrary and b is given as above. Furthermore, let the
family of functions {s;, } C C[0,1] satisfy (x). Then, for any fo € &,
the backward trajectories Wi (fo) converge to a function i € & which
interpolates Py.

¥ € C,[0,1] is called a continuous non-stationary fractal function.

Massopust, P.R. Non-Stationary Fractal Interpolation. Mathematics 2019, 7(8), 1 — 14.
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Example

Consider the two RB operators T; : C,[0,1] — C,[0,1], i = 1,2,
defined by

—L f(4z), z €0, }),
1-|-1f(4x—1) xe[%,l)»
TN =3130 s e h s
1ylfde—3), =zel31]

and 3
(3, rcl0,1),
(Taf)(z) = {%Jﬁllf(%l)’ xE[%EL

The RB operators 77 and 15 generate Kiesswetter’s fractal function
respectively, a Casino function.
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Alternating sequence {T;};cn of RB operators

Ty, 10(j—1)<k<10j—5, .
Tk::{1 ( ) = jeN.

Ty, 105 —5 < k < 10,

0.8

V/A\A mw oo

_o.sl

. . . .
0.2 0.4 0.6 0.8

-0.2

Figure: The hybrid Kiesswetter-Casino attractor.

.
1.0
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Quaternionic Fractal Interpolation

Now, we extend fractal interpolation to a quaternionic setting.

As quaternions from a non-commutative division algebra over the
reals, the non-commutativity generates more intricate and complex
fractal patterns.
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A Brief Introduction to Quaternions

Let {e1, ea,e3} be the canonical basis of the Euclidean vector space
R3.

We call {e1, e2, e3} imaginary units and require that the following
multiplication rules hold:
2_ 2 2 _
el =e; =e3=—1,
€1€2 = €3 = —€2€1, €263 = €] = —€3€2, €36 = €2 = —€1€3.
A real quaternion q is then an expression of the form

3

q:a+§ vie;, a,v1,v2,v3 € R.
i—1
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Addition and Multiplication

3 3
Let ¢ =a+ >, vie; and g = b+ > wie;.
i=1 i=1

3
Addition: q1 + g2 := (a+b) + > (v; + w;)e;.
i=1
Multiplication:
q1q2 = (ab — viw1 — vowy — v3ws) + (awy + buy + vows — vswa)er+

(aws + bvg — viws 4+ v3wy )es + (aws + bvg + v — Lwy — vown )es.

3
Each quaternion ¢ = a + Y v;e; may be decomposed as
i=1

q = Sc(q) + Vec(q),

3
where Sc(q) = a is the scalar part and Vec(q) = v = ) ve; is the
i=1

vector part of q.
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Conjugate and Inverse

The conjugate g of the real quaternion g =a+visg=a —v.
3
Note that ¢ = gg = a® + |[v|*> = a® + Y v2.
i=1
Norm on H: |q| := 1/qq.
1_ g

The inverse of a quaternion ¢ is given by ¢~ = T

3
H :=Hg := {a—l—Zviei T a,v,V2,V3 € R},

i=1

is a four-dimensional associative normed division algebra over R.
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Left Quaternionic Vector Spaces

A real vector space V is called a left quaternionic vector space if it is a
left H-module, i.e., if there exists a mapping H x V — V, (q,v) — qu
which satisfies

1. Yo e Vg1, g2 € H: (g1 + q2)v = q1v + gov.
2. Yuy,v3 € VVg € H: g(v1 + v2) = qu1 + qua.
3. Yo € VVq1,q2 € H: q1(q2v) = (q192)v.

A two-sided quaternionic vector space V is a left and right
quaternionic vector space such that Av = v\, for all A € R and for all
veV.

Example of a two-sided quaternionic vector space is given by H.

43 /53



Quaternionic Normed Spaces

Let V be a left quaternionic vector space. A function ||-|| : V — R is
called a norm on V if

1. o] =0iff v=0.
2. |lgv|l = |q| ||v||, for all v € V and ¢ € H.
3. lv+w| < ||| + |w]|, for all v,w € V.

A left quaternionic vector space endowed with a norm will be called a
left quaternionic normed space.

A left quaternionic normed space E is called complete if it is a
complete metric space with respect to the metric d(z,y) = ||z — y||
induced by the norm ||-||.

In this case, E is termed a left quaternionic Banach space.
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Example

The space H” consisting of k-tuples of quaternions is both a left and a
right quaternionic vector space.

Represent elements ¢ € H* as column vectors and define the

quaternionic conjugate * of £ by

&

*

| =@ - 8. gem
&k
i 1/2
H* endowed with the norm ||£]|, = /&*& = (Z §j|2> , becomes a
j=1

two-sided quaternionic Banach space as \v = v\, VA € R, Vv € HF.

H* becomes a topological and a complete metric space under |||,
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Left Linear Mappings

Let V1 and Vs be left quaternionic vector spaces. A mapping
f V1 — Vs is called left linear if

flgv+w) =qf(w) + fw), Yv,weV,VqeH.

A left linear mapping is termed bounded if

I5@) = F)l, _

z,yeEV1,x#£Y ”x - y||V1

LA +=
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Quaternionic Fractal Interpolation
E:=H=:F
Let X := {q =(90,q1,q2,¢3) € H: max g < 1} =~ [-1,1)*
1=0,1,2,3

A function f: X — H is called bounded if there exists a real number
M > 0 such that ||f|| < M.

BX,H):={f: X = H: f is bounded}.

B(X,H) becomes a left quaternionic vector space under

(f+9)(@) = f(x)+g(x) and (A-f)(z):=A-f(z), VeeXVIeH

Setting for each f € B(X,H)

If1I:= sup [[f ()],
reX

then B(X,H) becomes a left Banach space.
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Divide X into n := 2* congruent four-dimensional subcubes X; each
similar to X and such that {X;}?_, forms a partition of X.

Consider the RB operator T : B(X,H) — B(X,H) given by
Tf(l;(x)) := qi(x) + si(x) f(x), z€X, i€N,,

where ¢;, s; : X — H are bounded functions.

Let F:={f1,..., fn}. Write
Jimim—r-iy 7= fim © fim_y1 © firs

where each i; € N,,.

For each m € N:

m k—1 m
T f (Uit (@) = Y [ ] 51, @) aw(@) + [ ] si (@) f ().
k=1 j=1 k=1
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Bounded Quaternionic Fractal Function

Theorem. For the above setting, the RB operator T has a unique
fized point ¢ € B(X,H), i.e.,

Ty=v <= (i) =q(@)+si(x)Y(), zeX ieN,,
provided that
max sup |s;(z)| < 1.

1€N, zEX;

The fixed point ¢ is called a bounded quaternionic fractal function.

Massopust, P.R. Fractal interpolation: From global to local, to non-stationary and
quaternionic, in Frontiers of Fractal Analysis: Recent Advances and Challenges, S. Banerjee & A.
Gowrisankar (eds.), CRC Press, Boca Raton, 2022, 24 — 48.
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Example

X:={q€eH:Scqe0,1) A Vecq =0}. Note that X = [0,1) C R.

Define injections [; : X — X as follows:
L(z) =1z and Iy(z):=3(z+1).
Let 1 :=eg + 261 — ez + 3e4 and ¢ := —eg — 2e1 + 2e3 + e4.

Set q1(x) := (1 — q1)x and q2(x) := q222. (q1, g2 € B(X, H))
Define an RB operator T by

Tf(x) = 21 — q1)z + s1f(2z), T € [0,%),
. QQ(213—1)2+82f(25U—1), T E [%a1)7
s1 1= %060 + %el — %62 — 11063 and sg := —%eo + %el — %eg + %63.

|s1] = 5v/31 and |so| = $5v/45. Thus, max{sy, s2} < 1.
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Figure: The projections of 1 onto the (e, e;)-planes.
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3

As 1) can be written as ¢ = Y 1;e;, the parametric plots (¢, ¥1, 12)
i=0

and (1o, 12, 14) are displayed below

Figure: Some parametric plots of the components of 1
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